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New strings for old Veneziano amplitudes
II. Group-theoretic treatment
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Abstract

In this part of our four parts work we use theory of polynomial invariants of finite pseudo-reflection groups
in order to reconstruct both the Veneziano and Veneziano-like (tachyon-free) amplitudes and the generat-
ing function reproducing these amplitudes. We demonstrate that such generating function and amplitudes
associated with it can be recovered with help of finite dimensional exactly solvable N = 2 supersymmetric
quantum mechanical model known earlier from works of Witten, Stone and others. Using the Lefschetz iso-
morphism theorem we replace traditional supersymmetric calculations by the group-theoretic thus solving
the Veneziano model exactly using standard methods of representation theory. Mathematical correctness of
our arguments relies on important theorems by Shepard and Todd, Serre and Solomon proven respectively
in the early 50s and 60s and documented in the monograph by Bourbaki. Based on these theorems, we ex-
plain why the developed formalism leaves all known results of conformal field theories unchanged. We also
explain why these theorems impose stringent requirements connecting analytical properties of scattering
amplitudes with symmetries of space-time in which such amplitudes act.
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1. Introduction

1.1. Motivation

In our earlier work, Ref. [1], which will be called Part I, while discussing analytical properties
of the Veneziano and Veneziano-like amplitudes we noticed that the Veneziano condition for the
four-particle amplitude is given by

α(s) + α(t) + α(u) = −1, (1.1)

where α(s), α(t), α(u) ∈ Z. This result can be rewritten in more general and mathematically sug-
gestive form. To this purpose, following Ref. [2], we would like to consider additional homogenous
equation of the type

α(s)m+ α(t)n+ α(u)l+ k · 1 = 0, (1.2)

with m, n, l, k being some integers. By adding this equation to Eq. (1.1) we obtain,

α(s)m̃+ α(t)ñ+ α(u)l̃ = k̃, (1.3a)

so that we formally obtain,

n1 + n2 + n3 = N̂, (1.3b)

where all entries by design are nonnegative integers. For the multiparticle case this equation should
be replaced by

n0 + · · · + nk = N, (1.4)

so that combinatorially the task lies in finding all nonnegative integer combinations of n0, . . . , nk
producing Eq. (1.4). It should be noted that such a task makes sense as long as N is assigned. But
the actual value of N is not fixed and, hence, can be chosen quite arbitrarily.

Remark 1.1. In view of the results of Part I, one can argue that the value of N should coincide
with the exponent of the Fermat (hyper)surface. This observation is superficial, however, in view
of Eq. (3.29) of Part I. Indeed, in this Section we are talking about the mathematical statements
before the bracket operation 〈. . .〉 defined in Part I is applied. This means that we shall be working
mainly with precursors of the period integrals in the projective space discussed in some detail in
Section 3 of Part I. Evidently, this makes sense only if, in contrast with traditional string-theoretic
treatments, we interpret the Veneziano amplitudes as periods of the Fermat (hyper)surfaces.

Remark 1.2. Eq. (1.1) is a simple statement about the energy–momentum conservation. Although
the numerical entries in this equation can be changed as we just have explained to make them more
suitable for theoretical treatments, the actual physical values can be reobtained subsequently by
the appropriate coordinate shift. Such a procedure is not applicable to amplitudes in conformal
field theories (CFT) where the periodic (antiperiodic, etc.) boundary conditions cause energy and
momenta to become a quasi-energy and a quasi momenta as is well known from the solid state
physics. This fact was noticed already in Part I where Eq. (3.22) used in CFT replaces the standard
Veneziano condition, e.g. Eq. (1.2).

This arbitrariness of choosing N represents a kind of gauge freedom in physics terminology.
As in other gauge theories, we can fix the gauge by using some physical considerations. These
include, for example, an observation made in Part I that the four particle amplitude is zero if any
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two entries into Eq. (1.1) (or, which is the same, into Eq. (1.3b)) are the same. This fact prompts
us to arrange the entries in Eq. (1.3b) in accordance with their magnitude, i.e. n1 ≥ n2 ≥ n3.

More generally, in view of Eq. (1.4), we can write: n0 ≥ n1 ≥ · · · ≥ nk ≥ 1.1 Provided that Eq.
(1.4) holds, we shall call such a sequence a partition and shall denote it as n ≡ (n0, . . . , nk).
If n is partition of N, then we shall write n � N. It is well known [3,4] that there is one-to-one
correspondence between the Young diagrams and partitions. We would like to use this fact in
order to design a new partition function capable of reproducing the Veneziano (and Veneziano-
like) amplitudes. Clearly, such a partition function should also make physical sense. This is the
primary goal of our paper. In this section we would like to provide some convincing qualitative
arguments that such a goal can indeed be achieved. The rest of the paper provides more rigorous
mathematical results supporting our claim.2

We begin with observation (taken from our earlier study of the Witten–Kontsevich model, Ref.
[7]) that there is one-to-one correspondence between the Young tableaux and directed random
walks. Let us recall details of this correspondence now. To this purpose we need to consider
a square lattice and to place on it the Young diagram associated with some specific partition
which belongs to n. To do so, let us choose some ñ× m̃ rectangle3 so that the Young diagram
occupies the left part of this rectangle. We choose the upper left vertex of the rectangle as the
origin of the xy coordinate system whose y axis (south direction) is directed downwards and
x axis is directed eastwards. Then, the southeast boundary of the Young diagram can be in-
terpreted as directed (that is without self intersections) random walk which begins at (0,−m̃)
and ends at (ñ, 0). Clearly, such a walk completely determines the diagram. The walk can be
described by a sequence of 0’s and 1’s, say, 0 for the x-step move and 1 for the y-step move.
The totality N of Young diagrams which can be placed in the rectangle is in one-to-one corre-
spondence with the number of arrangements of 0’s and 1’s whose total number is m̃+ ñ. The
logarithm of the number N of possible combinations of 0’s and 1’s is just the entropy associated
with the Fermi statistic (or, equivalently, the entropy of mixing for the binary mixture) used in
physics literature. The number N is given by N = (m+ n)!/m!n!.4 It can be represented in two
equivalent ways

(m+ n)!

m!n!
= (n+ 1)(n+ 2) · · · (n+m)

m!
≡
(
n+m

m

)

= (m+ 1)(m+ 2) · · · (n+m)

n!
≡
(
m+ n

n

)
. (1.5)

In Part I, Eqs. (1.21)–(1.23) explain how N is entering the Veneziano amplitude. Additional
physical significance of this number in connection with the Veneziano amplitude and its partition
function is developed in Ref. [6] and in Part III. For such a development it is absolutely essential

1 The last inequality: nk ≥ 1, is chosen only for the sake of comparison with the existing literature conventions, e.g. see
Ref. [3].

2 We would like to warn our readers that, actually, there are several interrelated formulations of this partition function.
Ref. [6] and Part III provide some examples of such formulations. Part IV provides additional requirements aimed to
connect our formulations with the experimental data.

3 The parameters ñ and m̃ will be specified shortly below.
4 We have suppressed the tildas for n and m in this expression since these parameters are going to be redefined below

anyway.
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that the number N is integer for all nonnegative m’s and n’s5 and can be presented in two ways. In
Part I we noticed that N can be interpreted as the total number of points with integer coordinates
enclosed by the dilated (with dilation coefficient n) m-dimensional simplex n�m whose vertices
are located at the nodes of Zm. This observation is crucial for development of our formalism,
especially in Part III.

Let now p(N; k,m) be the number of partitions of N into ≤ k nonnegative parts, each not larger
than m. Consider the generating function of the following type:

F(k,m|q) =
S∑

N=0

p(N; k,m)qN, (1.6)

where the upper limit S will be determined shortly below. It is shown in Refs. [3–5,8]

that F(k,m|q) =
[
k +m

m

]
q

≡
[
k +m

k

]
q

where, for instance,

[
k +m

m

]
q=1

=
(
k +m

m

)
.6 It

should be clear from this result that the expression

[
k +m

m

]
q

is a q-analog of the binomial

coefficient

(
k +m

m

)
. In literature [3–5,8] this q-analog is known as the Gaussian coefficient.

Explicitly,[
k

m

]
q

= (qk − 1)(qk−1 − 1) · · · (qk−m+1 − 1)

(qm − 1)(qm−1 − 1) · · · (q− 1)
. (1.7)

From this definition, it should be intuitively clear that the sum defining the generating function
F(k,m|q) in Eq. (1.6) should have only finite number of terms. Eq. (1.7) allows easy determination
of the upper limit S in the sum, Eq. (1.6). It is given by km. This is just the area of the k ×m

rectangle. Evidently, in view of the definition of p(N; k,m), the number m = N − k. Using this

fact, Eq. (1.6) can be rewritten as: F(N,N − k|q) =
[
N

k

]
q

. This expression happens to be the

Poincaré polynomial for the complex Grassmannian Gr(m, k). This can be found on page 292 of
the famous book by Bott and Tu, Ref. [9].7 From this point of view the numerical coefficients,
i.e. p(N; k,m), in the q expansion of Eq. (1.6) should be interpreted as the Betti numbers of this
Grassmannian. They can be determined recursively using the following property of the Gaussian

5 That this should be the case can be seen by noticing that using symmetry considerations we can always write (m+ n)! =
m!n!C(m, n). The constant C(m, n) represents all permutations between sets m and n. It should be a positive integer since
the l.h.s.in the above equation is a positive integer.

6 On page 15 of the book by Stanley, Ref. [4], one can find that the number of solutions N(n, k) in positive integers to

y1 + · · · + yk = n+ k is given by

(
n+ k − 1

k − 1

)
while the number of solutions in nonnegative integers to x1 + · · · +

xk = n is

(
n+ k

k

)
. Careful reading of page 15 indicates however that the last number refers to solution in nonnegative

integers of the equation x0 + · · · + xk = n. We have used this fact in Part I, e.g. see Eq. (1.21).
7 To make a comparison it is sufficient to replace parameters t2 and n in Bott and Tu book by q and N.
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coefficients [4, p. 26][
n+ 1

k + 1

]
q

=
[

n

k + 1

]
q

+ qn−k
[
k

m

]
q

, (1.8)

and taking into account that

[
n

0

]
q

= 1. To demonstrate thatF(N,N − k|q) is indeed the Poincaré

polynomial for the Grassmannian we would like to use some results from the number theory. For
readers unfamiliar with number theory a concise summary of relevant results can be found, for
instance, in Appendix A of our earlier work, Ref. [10]. Given this, let q be some prime and
consider the finite field Fq of q elements. Consider next the field extension. This is effectively
accomplished by constructing an N dimensional vector space via prescription:

FNq = {α1, . . . , αN} : αi ∈ Fq. (1.9)

Any number which belongs to this new (extended) number field is expandable in terms of the basis
“vectors” just specified. It can be shown [2,8], that the number of k-dimensional subspaces of the
vector space FNq is given exactly by F(N,N − k|q). The arguments leading to such a conclusion
can be found already in the classical paper by Andre Weil, Ref. [11], written in 1949. Incidentally,
in his paper he studies the number of solutions in the field Fq for the Fermat hypersurface F

a0z
N̂
0 + · · · + an+1z

N̂
n+1 = 0, (1.10)

living in the complex projective space CPn+1. Such a hypersurface was discussed in Part I (e.g. see
Eq. (3.6)) in connection with our calculations of the Veneziano (and Veneziano-like) amplitudes.
For the sake of space, with exception of Section 8.3, in this work we avoid the number-theoretic
aspects related to the Veneziano amplitudes and their partition functions. We shall explain shortly
below the rationale behind such an exception.

In the meantime, going back to our discussion, we notice that due to relation m = N − k it is
more advantageous for us to use parameters m and k than N and k. With this in mind we obtain,

F(k,m|q) =
[
k +m

k

]
q

= (qk+m − 1)(qk+m−1−1 − 1) · · · (qm+1 − 1)

(qk − 1)(qk−1 − 1) · · · (q− 1)
=

k∏
i=1

1 − qm+i

1 − qi
.

(1.11)

This result is reobtained in the main text using different mathematical arguments. It is of central
importance for this work since it is obtainable from the supersymmetric partition function capable
of reproducing the Veneziano and Veneziano-like amplitudes. In the limit: q → 1 Eq. (1.11)
reduces to the number N as required. To make connections with results already known in physics
we need to rescale q’s in Eq. (1.11), e.g. let q = t1/i. Substitution of such an expression back into
Eq. (1.11) and taking the limit t → 1 again produces N in view of Eq. (1.5). This time, however,
we can accomplish much more. By noticing that in Eq. (1.4) the actual value of N by design is
not fixed thus far and taking into account that m = N − k we can fix N by fixing m. Specifically,
we would like to choosem = 1 · 2 · 3 · · · k and with such an m to consider a particular term in the
product Eq. (1.11), e.g.

S(i) = 1 − t1+(m/i)

1 − t
. (1.12)
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In view of our “gauge fixing” the ratiom/i is a positive integer by design. This means that we are
having a sum for the geometric progression. Indeed, if we rescale t again: t → t2, then we obtain

S(i) = 1 + t2 + · · · + t2m̂, (1.13)

with m̂ = m
i

. Written in such a form the sum above is just the Poincaré polynomial for the complex
projective space CPm̂. This can be seen by comparing pages 177 and 269 of the book by Bott
and Tu, Ref. [9]. Hence, at least for some m’s, the Poincare′ polynomial for the Grassmannian
in just the product of the Poincare′ polynomials for the complex projective spaces of known
dimensionalities. For m just chosen in the limit: t → 1, we reobtain back the numberN as required.
This physically motivating process of gauge fixing we have just described can be replaced by more
rigorous mathematical arguments. The recursion relation, Eq. (1.8), introduced earlier indicates
that this is possible. The mathematical details leading to just described factorisation can be found,
for instance, in the lecture notes by Schwartz, Ref. [12, Chapter 3]. Nevertheless, in Section 7,
in view of their simplicity and intuitive appeal (as compared with arguments by Schwartz), we
use different chain of arguments to arrive at the same conclusions. The topological significance
of the Poincaré polynomial decomposition into the product of Poincaré polynomials is discussed
in general terms in Section 4 and is used in Sections 7and 8 to recover the relevant physics. The
relevant physics emerges by noticing that the partition function Z(J) for the particle with spin J
is given by [13]

Z(J) = tr(e−βH(σ)) = ecJ + ec(J−1) + · · · + e−cJ = ecJ (1 + e−c + e−2c + · · · + e−2cJ ),

(1.14)

where c is known constant. Evidently, up to a constant, Z(J) � S(i). But the result Eq. (1.14)
is the Weyl character formula! This fact is to be discussed at length in Part III. The observa-
tion just made brings the classical group theory into our arguments. More importantly, because
the partition function for the particle with spin J can be written in the language of N = 2 su-
persymmetric quantum mechanical model8 as demonstrated by Stone [13] and others [14], the
connections between the supersymmetry and the classical group theory are evident. We develop
these connections further in this work. Part III (see also Ref. [6]) contains many additional results.

In view of arguments presented above, the Poincaré polynomial for the Grassmannian can be
interpreted as a partition function for a kind of a spin chain made of spins of various magnitudes9

caused by gauge fixing just described. In fact, the spin analogy is actually unnecessary since the
formalism developed in Ref. [14] is valid for any finite dimensional homogenous space. It remains
to demonstrate that the finite dimensional supersymmetric model just sketched can be used for
reproduction of the Veneziano and Veneziano-like amplitudes. Such a task is accomplished in
the rest of this work. The major reason for finite dimensionality is given by important theorems
by Solomon, Shepard and Todd, Lefschetz and Serre discussed in the main text. In addition,
the important theorem by Serre discussed in Section 9 not only provides needed support to
our qualitative conclusions about finite dimensionality but also explains the connection between
analytical properties of the Veneziano (and Veneziano-like) amplitude and the properties of space-
time in which such amplitude “lives”.

8 We hope that no confusion is made about the meaning of N in the present case.
9 In such a context it can be vaguely considered as a variation on the theme of the Polyakov rigid string (Grassmann
σ) model, Ref. [15], pp. 283–287, except that now it is exactly solvable. A somewhat different interpretation of the rigid
string model was developed in our earlier work, Ref. [16].
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1.2. Organization of the rest of this paper

The rest of this paper provides needed mathematical justifications supporting intuitive ideas
just discussed. These justifications come mainly from the theory of invariants of finite pseudo-
reflection groups. For the sake of uninterrupted reading, major ingredients of this theory are
provided in the text along with important facts (in Appendix A) about the Weyl–Coxeter reflection
groups and their generalization to pseudo-reflection groups by Shepard and Todd and others.
Sections 2–6 contain all information needed for recovery of Eq. (1.11). In view of the recursion
relation, Eq. (1.8), it can be interpreted as the Weyl character formula (this will be proven in Part
III). In view of this observation, in Section 7 we accomplish several tasks. First, we provide needed
mathematical justification for Eq. (1.12) thus connecting our results with those known earlier for
spins and spin chains. Second, we investigate if this connection is the only option available or if
there are other options. We find these other options as well. They allow us to bring into picture
the formalism of exactly integrable systems and, in particular, to connect the obtained results
with the tau function of the Kadomtsev–Petviashvili hierarchy. Through such a connection it is
possible, in principle, to establish links with the existing string-theoretic formalism. Obtained
results supply us with still other options however. This point of bifurcation from traditional
formalism is studied further in Section 8. In it we discuss new exact solution of the Veneziano
model. The obtained result happens to have additional uses which we also discuss in some detail.
In particular, earlier searches for quantum mechanical systems whose spectrum reproduces zeros
of the Riemann zeta function had resulted in the likely candidate: H = xp. In Part I, Eq. (1.12),
does represents the Veneziano amplitude as product of zeta functions. In Section 8 we argue
that this is not a curiosity: there is a deep reason for such a representation. Thus, we explain
how the Hamiltonian H = xp is related to the string-theoretic results we have obtained. After
this, in Section 9 we discuss from various angles the important theorem by Serre. This theorem
explains why there is not much freedom left to improve (replace, change) the Veneziano amplitude.
This result is further strengthened by our observation that the function generating all Veneziano
amplitudes is obtainable as a deformation retract for the Bergman kernel. Such a kernel has
been used recently in connection with complex-hyperbolic geometry. The metric obtainable with
such a kernel is an analog of the Lobachevskii metric in the real hyperbolic space. In accord
with the ball model for the real hyperbolic space, there is analogous ball model for the complex
hyperbolic space. The isometries of the boundary of such a ball model are described by the
Heisenberg group. Since the real hyperbolic space is just a part of the complex-hyperbolic and since
the real-hyperbolic is connected with the Minkowski space-time, we obtain the unusually tight
connections between the Veneziano amplitudes and the properties of space-time in which these
amplitudes act.

2. Selected exercises from Bourbaki (beginning)

In this section we begin our explanation of how group-theoretic methods can be used for recon-
struction of both the Veneziano amplitudes and their generating/partition function. To accomplish
this task, we need to work out some problems listed at the end of Chapter 5, paragraph 5 (problem
set # 3) of the monograph by Bourbaki, Ref. [17]. Fortunately, answers to these problems to a large
extent (but not completely!) can be extracted from the paper by Solomon [18]. In view of their
crucial mathematical and physical importance, we reproduce some of his results in this section
and will complete our treatment in Sections 3–6.
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Let K be the field of characteristic zero (e.g. C) and V be the vector space of finite dimension
l over it. Let G be a subgroup of GLl(V ) acting on V. Let q be the cardinality of G.10 Introduce
now the symmetric S(V ) and the exterior E(V ) algebra of V in order to construct invariants of
the group G made of S(V ) and E(V ).11 This task requires several steps. First, the multiplication
of polynomials leads to the notion of a graded ring R.12 For example, if the polynomial Pi(x) of
degree i belongs to the polynomial ring F[x], then the product Pi(x)Pj(x) ∈ Pi+j(x) ∈ F[x].

Definition 2.1. A graded ring R is a ring with decomposition R = ⊕j=ZRj compatible with
addition and multiplication.

Next, for the vector space V if x = x1 ⊗ · · · ⊗ xs ∈ V⊗s and y = y1 ⊗ · · · ⊗ yt ∈ V⊕t , then the
product x⊗ y ∈ V⊕s+t . A multitude of such type of tensor products forms the noncommutative
associative algebra T (V ). Finally, the symmetric algebra S(V ) is defined by S(V ) = T (V )/I,
where the ideal I is made of x⊗ y − y ⊗ x (with both x and y ∈ V ). In practical terms S(V ) is
made of symmetric polynomials F[t1, . . . , tl] with t1, . . . , tl being in one-to-one correspondence
with the basis elements of V (that is each of ti’s is entering into S(V ) with power one). The exterior
algebra E(V ) can be now defined analogously. For this we need to map the vector space V into
the Grassmann algebra of V. In particular, if x ∈ V , then its image in the Grassmann algebra x̃
possess a familiar property: x̃2 = 0. The graded two-sided ideal I can be defined now as

I = {x̃2 = 0|x → x̃; x ∈ V }, (2.1)

so that E(V ) = T (V )/I. To complicate matters a little bit, we would like to consider a map d:
x → dx for x ∈ V and dx belonging to the Grassmann algebra. If t1, . . . , tl is the basis of V,
then dti1 ∧ · · · ∧ dtik is the basis of Ek(V ) with 0 ≤ k ≤ l and, accordingly, the graded algebra
E(V ) admits the following decomposition: E(V ) = ⊕l

k=0Ek(V ). Next, we need to construct the
invariants of a (pseudo-reflection) group G made out of S(V ) and E(V ) and, more importantly,
out of the tensor product S(V ) ⊗ E(V ). Toward this goal we need to determine if the action of
the map d : V → E(V ) extends to a differential map

d : S(V ) ⊗ E(V ) → S(V ) ⊗ E(V ). (2.2)

Clearly, ∀x ∈ E(V ) we have d(x) = 0. Therefore, ∀x, y ∈ S(V ) ⊗ E(V ) we can write d(x, y) =
d(x)y + x d(y). By combining these two results together we obtain,

d : Si(V ) ⊗ Ej(V ) → Si−1(V ) ⊗ Ej+1(V ), (2.3)

i.e. the differentiation is compatible with grading. Now we are ready to formulate the theorem by
Solomon [18] which is of central importance for our work. It is formulated in the form stated in
Bourbaki, Ref. [17].

Theorem 2.2. Solomon [18] Let P1, . . . , Pk be algebraically independent polynomial forms
made of symmetric combinations of t1, . . . , tk generating the ring S(V )G of invariants of G. Then,

10 i.e. the number of elements of G.
11 The fact that we actually need to use the pseudo-reflection groups (e.g. see Appendix A, part A.4), will be explained

mathematically only later, in Section 9. Hence, the formalism we are describing in this and following sections has actually
a wider use.
12 Surely, once the definition of such ring is given, there is no need to use polynomials. But in the present case this

analogy is useful.
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every invariant differential p-form ω(p) may be written uniquely as a sum

ω(p) =
∑

i1<···<ip
ci1...ip dPi1 · · · dPip ; 1 ≤ p ≤ k, (2.4)

with ci1...ip ∈ S(V )G. Moreover, actually, the differential forms Ω(p) = dPi1 ∧ · · · ∧ dPip with
1 ≤ p ≤ k generate the entire algebra of G-invariants of S(V ) ⊗ E(V ).

Corollary 2.3. Let t1, . . . , tk be the basis of V. Furthermore, letS(V ) = F[t1, . . . , tk] be its algebra
of symmetric polynomials and S(V )G = F[P1, . . . , Pl] its finite algebra of G-invariants.13 Then,
since dPi =∑j

∂Pi
∂tj

dtj , we have

dP1 ∧ · · · ∧ dPk = J(dt1 ∧ · · · ∧ dtk), (2.5)

where, up to a constant factor c ∈ K, the Jacobian J is given by J = cΩ with

Ω =
ν∏
i=1

L
ci−1
i . (2.6)

In this equation Li is the linear form defining i-th reflecting hyperplane Hi (it is assumed that
the set of H1, . . . , Hν of reflecting hyperplanes is associated with G), i.e. Hi = {α ∈ V |Li(α) =
0} as defined in the Appendix A. In the same Appendix A, parts A.3, A.4, one finds that the
set of all elements of G fixing Hi pointwise forms a cyclic subgroup of order ci generated by
pseudoreflections.

The result, Eq. (2.6), as well as the proportionality, J = cΩ, can be found in the paper by
Stanley [20]. It can be also found in much earlier paper by Solomon [18] where it is attributed to
Steinberg and Shephard and Todd. Stanley’s paper contains some details missing in earlier papers
however.

Remark 2.4. The results given by Eqs. (2.5) and (2.6) play a key role in the theory of hyperplane
arrangements to be briefly discussed in Section 9.

Using Theorem 2.2 by Solomon, Ginzburg proved the following

Theorem 2.5. Ginzburg, Ref. [21, p. 358] Let ωx(ξ1, ξ2) be a symplectic (Kirillov-Kostant)
two-form (to be defined in Part III), let ΩN = ωNx be its N-th exterior power—the volume form,
with N being the number of positive roots of the associated Weyl–Coxeter reflection group, then

∗(ΩN ) = const · dP1 ∧ · · · ∧ dPk,

where the star ∗ denotes the standard Hodge-type star operator.

Corollary 2.6. As it is argued in Part III, every nonsingular algebraic variety in projective space
is symplectic. The symplectic structure gives raise to the complex Kähler structure which, in turn,
is of the Hodge-type for the Kirillov-type symplectic manifolds. Alternative arguments leading to
the same conclusion are presented in Section 9.2.2.

13 More details about S(V )G are given later in Section 9. The fact that the number of polynomial forms Pi is equal to the
rank l of G is not a trivial fact. The proof can be found in Ref. [19, p.128]. Incidentally, this proof implies immediately the
result, Eq. (2.6), given below. It is essential that to arrive at this result requires for the algebra of G-invariants to be finite.
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In the famous paper, Ref. [22, p. 10, Eq.(4.1)]Atiyah and Bott argued that ω(p) can be used for
construction of the basis of the equivariant cohomology ring. Their results will be discussed in
some detail in Part III. We refer our readers to the monograph [23] by Guillemin and Sternberg
where the concepts of equivariant cohomology are pedagogically explained along with many
other helpful mathematical facts of immediate relevance to our work.

The results just presented are essential for reconstruction of both the multiparticle Veneziano
and Veneziano-like amplitudes. They also provide the needed mathematical background
for adequate physical interpretation of these amplitudes. The next section illustrates these
claims.

3. Veneziano amplitudes and Solomon’s theorem

Let V be the complex affine space of dimension l and letLi(v), v ∈ V be the linear form defining
the ith hyperplane Hi, i.e.

Hi = {v ∈ V |Li(v) = 0}, i = 1, . . . , l. (3.1)

Results of Refs. [24,25] and those in Appendix A allow us to connect the set of hyperplanes,
Eq. (3.1), with the complete fan (see also Section 9) and, using this fan, to associate it with
it the polyhedron P. Taking these facts into account, let us consider now an integral I of the
type

I =
∫
P
ci1...ipdPi1 ∧ · · · ∧ dPip ; 1 ≤ p ≤ l. (3.2)

Such an integral is connected with the period integrals of the type

Π(λ) =
∮
Γ

P(z1, . . . , zn)

Q(z1, . . . , zn)
dz1 ∧ dz2 · · · ∧ dzn, (3.3)

discussed in Part I. To avoid duplications, we are only presenting results of immediate relevance.
In particular, in Part I we demonstrated that for the Fermat variety whose affine form is written as

Faff(N) : YN1 + · · · + YNn+1 = 1, Yi = xi

x0
≡ zi, (3.4)

the period integral Π(λ) is reduced (after calculation of the Leray residue) to the Veneziano (or
Dirichlet)-like integral I14 given explicitly by

I=̇
∫
�

t
〈c1〉/N−1
1 · · · t〈cn+1〉/N−1

n+1 dt1 ∧ · · · ∧ dtn. (3.5)

In view of Eqs. (2.5) and (2.6), it is of the type given by Eq. (3.2). In the present case the polyhedron
P is the n+ 1 simplex�. Not surprisingly, it is the deformation retract for the Fermat variety (as
it is for CPn) since the Fermat variety is embedable into CPn [24].15 In accord with Part I, the
symbol =̇ denotes the statement: “with accuracy up to some constant (a phase factor)”. The phase
factors are important. We have discussed them at length in Part I without much theory behind
them. Such a theory is well described, for example, in the monograph by Fulton, Ref. [24], and

14 e.g. See Eq. (3.24) of Part I.
15 We shall discuss this issue also in Section 9.
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will be used and further discussed in Part III. In Section 9 we shall use some facts from this theory
in order to prove that developments in this work do require use of the complex pseudo-reflection
groups.

In connection with Part III (see also Ref. [6]) and in view of Theorems 2.2 and 2.5 we would
like now to rederive result, Eq. (3.5), making emphasis on symplectic aspects of the Veneziano
amplitudes. To this purpose, we would like to consider an auxiliary problem of calculation of the
volume of k-dimensional simplex �k. It is given by the integral of the type

vol(�k) =
∫
xi≥0

dx1 · · · dxk+1δ(1 − x1 − · · · − xk+1). (3.6)

Using results from symplectic geometry [26], it is straightforward to show that the above integral
(up to unimportant constant) is just the microcanonical partition function for the system of k + 1
harmonic oscillators whose total energy is equal to 1. To calculate such a partition function it is
sufficient to take into account the integral representation of the delta function. Then, the standard
manipulations with integrals produce the following anticipated result:

vol(�k) = 1

2π

∮
dy exp(iy)

(iy)k+1 = 1

k!
. (3.7a)

Clearly, for the dilated volume we would obtain instead: vol(n�k) = nk

k! , where n is the dilatation
coefficient. This result was discussed already in Part I, e.g. see Eq. (1.24). This calculation allows
us to obtain as well the volume of k-dimensional hypercube (or, perhaps more generally, the
convex polytope P) as

nk = k!vol(n�k). (3.7b)

This result was obtained in famous paper by Atiyah [27] inspired by earlier result by Koush-
nirenko [28]. It is discussed at length both in Ref. [6] and Part III, in connection with alternative
symplectic formulation of the partition function reproducing the Veneziano (and Veneziano-like)
amplitudes. In the meantime, the observations just made allow us to rederive the Veneziano
amplitude in a much simpler way. To do so, we extend our analysis of Eq. (3.6) having
in mind both Theorems 2.2 and 2.5. This leads us to consideration of the integral of the
type

I =
∫
xi≥0

dx〈c1〉
1 ∧ · · · ∧ dx〈ck+1〉

k+1 δ(1 − xN1 − · · · − xNk+1), (3.8)

written in accord with notations of Part I. The presence of δ function reminds us about the procedure
(discussed in Part I) of taking the Leray-type residue in the period integral, Eq. (3.3). We would
like to demonstrate now that the integral, Eq. (3.8) can be calculated much easier as compared to
calculations described in detail in Part I. To simplify notations, let 〈ci〉 = pi and, furthermore, let
ni = N

pi
. By analogy with (3.7a) we obtain (up to a constant as before),

I=̇ 1

2π

∮
dy

[
k+1∏
i=1

(
1

iyni

)1/ni
Γ

(
1

ni

)]
exp(iy)=̇Γ

(
p1
N

) · · ·Γ (pk+1
N

)
Γ
(∑

i
pi
N

) , (3.9)

in agreement with Eq. (3.27) of Part I as required.
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4. Selected excersises from Bourbaki (continuation)

The results of previous section indicate that the Veneziano and Veneziano-like amplitudes can
be reconstructed from the algebra of invariants (S(V ) ⊗ E(V ))G of the group G not yet specified.
The question naturally arises: can we use the same invariance principle in order to reconstruct
the meaningful physical model reproducing the Veneziano and Veneziano-like amplitudes? We
provide positive answer to the above posed question in this section and in Sections 6–9.

To begin, we need to discuss properties of the ring S(V )G of symmetric invariants composed
of algebraically independent polynomial forms P1, . . . , Pl made of symmetric combinations of
t1, . . . , tl raised to some powers di (i = 1, . . . , l) different for different reflection groups [29].
The ring of invariants is graded and it admits a decomposition (which actually is always finite):
S(V )G =⊕∞

j=0 Sj(V )G. Provided that dimK V
G
j is the dimension of the graded invariant subspace

Sj(V )G defined over the field K, the following definition can be given.

Definition 4.1. The Poincaré polynomial P(S(V )G, t) is defined by

P(S(V )G, t) =
∞∑
i=0

(dimK V
G
j )ti. (4.1)

The Poincaré polynomial possesses the splitting property [29] (the most useful for applications in
K-theory [12]). This can be described as follows. If the total vector space M is made as a product
V ⊗K V

′ of vector spaces V and V ′, then the Poincaré polynomial of such a product is given by

P(V ⊗K V
′, t) = P(V, t)P(V ′, t). (4.2)

This splitting property is of topological nature [9] since it reflects the decomposition property of
the total topological space into pieces and for this reason is extremely useful in actual calculations.
In particular, let us consider the polynomial ringF [x] made of monomials of degree d which are the
building blocks of the graded vector space V as discussed in Section 2. The Poincaré polynomial
for such a space is given by

P(V, t) = 1 + td + t2d + · · · = 1

1 − td
. (4.3)

Consider now the multivariable polynomial ring F [x1, . . . , xn] made of monomials of respective
degrees di. Then, using the splitting property, we obtain at once

VT = F [x1] ⊗K F [x2] ⊗K F [x3] ⊗K · · · ⊗K F [xn]

and, of course,

P(VT , t) = 1

1 − td1
· · · 1

1 − tdn
. (4.4)

In particular, if all di in Eq. (4.4) are equal to one, which is characteristic for S(V ) defined in
Section 2, e.g. read Ref. [29, p. 171], then we reobtain back Eq. (1.22) of Part I.

Remark 4.2. Since the Laplace transform of Eq. (1.22) of Part I produces the (nonsymmerized)
Veneziano amplitude, the connection between the theory of invariants of finite (pseudo)reflection
groups and the physical model reproducing such an amplitude becomes apparent already at this
point.
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This remark allows us to make several additional steps to make our presentation mathematically
self contained and focused on physics. To this purpose, letG ⊂ GL(V ) be one of such reflection
groups. Suppose that its cardinality |G| =∏i di. Next, we introduce the averaging operator Av :
V → V via

Av(x) = 1

|G|
∑
ϕ∈G

ϕ ◦ x. (4.5)

By definition, x is the group invariant, x ∈ VG, if Av(x) = x. In particular,

dimK V
G
j = 1

|G|
∑
ϕ∈G

tr(ϕj). (4.6)

This result can be explained as follows. Suppose x ∈ VG, then Av (Av(x) = x) → Av2(x) =
Av(x) = x. Thus, the Av operator is indepotent. Such indepotent operator has evidently only two
eigenvalues: 1 and 0. Using this fact in Eq. (4.5) produces Eq. (4.6).

By combining Eq. (4.6) result with Eq. (4.1) we obtain,

P(S(V )G, t) =
∞∑
i=0

(dimK V
G
j )ti =

∞∑
i=0

1

|G|
∑
ϕ∈G

tr(ϕi)t
i

= 1

|G|
∑
ϕ∈G

[ ∞∑
i=0

tr(ϕi)t
i

]
= 1

|G|
∑
ϕ∈G

1

det(1 − ϕt)
. (4.7)

The obtained result is known as the Molien theorem [29]. It is based on the following nontrivial
identity

∞∑
i=0

tr(ϕi)t
i = 1

det(1 − ϕt)
, (4.8)

valid for the upper triangular matrices, i.e. for matrices which belong to the Borel subgroup B of
G.16 For such matrices

tr(ϕi) =
∑

j1+j2+···+jn=i
λ
j1
1 · · · λjnn , (4.9)

where the Borel-type matrix ϕ of dimension n has λ1, . . . , λn on its diagonal. Substitution of Eq.
(4.9) into Eq. (4.7) produces

∞∑
i=0

tr(ϕi)t
i =

∞∑
i=0

⎡
⎣ ∑
j1+j2+···+jn=i

λ
j10
1 · · · λjnn

⎤
⎦ ti =

⎡
⎣ ∞∑
j1=0

λ
j1
1 t
j1

⎤
⎦ · · ·

⎡
⎣ ∞∑
jn=0

λjnn t
jn

⎤
⎦

= 1

1 − λ1t
· · · 1

1 − λnt
= 1

det(1 − ϕt)
. (4.10)

We have gone through all details in order to demonstrate the bosonic nature of the obtained
result: by replacing t with exp(−ε) with 0 ≤ ε ≤ ∞ and associating numbers ji with the Bose

16 In Part III we shall provide important details on the subgroup B.
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statistic occupation numbers we have obtained the partition function for the set of n independent
harmonic oscillators (up to zero point energy). This result will be reobtained in Part III using
different arguments.

In view of Eq. (4.7), thus obtained result should be additionally group averaged. In particular,
by combining Eqs. (4.4) and (4.7) we obtain,

P(S(V )G, t) = 1

|G|
∑
ϕ∈G

1

det(1 − ϕt)
=

n∏
i=1

1

1 − tdi
. (4.11)

This result is valid for any (pseudo)reflection group G ⊂ GL(V ) whose cardinality |G| =∏i di
in accord with the conditions of Theorem 2.2 by Solomon. Following Humphreys [30], it is useful
to reinterpret Eq. (4.11) using the following physically motivated arguments. We consider an
action of the averaging operator, Eq. (4.5), on the monomials

x = z
j1
1 · · · zjnn , where j1 + j2 + · · · + jn = i.

These are the eigenvectors for ϕi with the corresponding eigenvalues λj1
1 · · · λjnn . The weighted

sum of these eigenvalues is the trace of the linear operator Av(x) acting on monomials from
Si(V )G. But, according to Eq. (4.6), this is just the dimension of space Si(V )G. This dimension
has the following physical meaning. If for the moment we assume (and later, in Section 9, we
prove) that all eigenvalues in Eq. (4.9) are i-th roots of unity, then, by combining Eqs. (9.15)–(9.18)
of Section 9 and the results of Appendix A, parts A.3, A.4 we arrive at the Veneziano condition∑

k

mkjk = i, (4.12a)

again. Since in this equation mi = di − 1 mod i, it is equivalent to∑
k

dkjk = 0 mod i. (4.12b)

In particular, if dkjk = ωi (for k = 1, . . . , n and ω ∈ Z) then, using this equation along with Eqs.
(4.8) and (4.9), we arrive at the following result:

∞∑
i=0

tr(ϕi)t
i =

∞∑
i=0

⎡
⎣ ∑
j1d1+j2d2+···+jndn=i

λ
j1d1
1 · · · λjndnn

⎤
⎦ ti

=
∞∑
j1=0

tj1d1

∞∑
j2=0

tj2d2 · · ·
∞∑
jn=0

tjndn =
n∏
i=1

1

1 − tdi
, (4.13)

to be compared with earlier obtained Eq. (4.11). Again, we have gone through all these details
in order to demonstrate the bosonic nature of the obtained result, Eq. (4.11). Clearly, the result,
Eq. (4.11), can be reproduced using the path integrals for n independent bose-like particles, e.g
harmonic oscillators. Such a conclusion is going to be strengthened in Part III devoted to the
symplectic interpretation of the obtained results. However, the obtained results are incomplete
since thus far we were dealing only with S(V )G-type of invariants made of monomials raised
to di-th powers. Theorem 2.2 requires us to construct the Poincaré polynomials for invariants of
(S(V ) ⊗ E(V ))Gtype. To design such polynomials we need to discuss several additional topics.
These are presented in the next two sections.
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5. Additional facts from the theory of pseudo-reflection groups

In Appendix A, part A.4, we have listed some basic facts about pseudo-reflection groups. At
this point we would like to extend this information. To this purpose we would like to use some
results from the classical paper by Shepard and Todd [31] (S-T).We shall use these results along
with those from the monograph by McMullen [32] containing the up to date developments related
to the S-T work.

Adopting S-T notations, letN ≥ 1, n ≥ 2, and let p be a divisor of N, i.e.N = pq. In addition,
let ξ be a primitive N-th root of unity. Then, the unitary group G(N,p, n) is defined as the group
of all monomial transformations in Cn of the form (e.g. see Section 9 below)

x′
i = ξνixσ(i), i = 1, . . . , n, (5.1)

where σ(1), . . . , σ(n) is permutation σ of (1, . . . , n), i.e. σ ∈ Sn, and∑
i

νi = 0(modN). (5.2a)

In the case if N = pq the above condition should be changed to∑
i

νi = 0(modp). (5.2b)

The groupG(N,p, n) has order (or cardinality) |G| = qNnn!. The order of the groupG(N,p, n)
can be determined by considering the set of 2-fold reflections given by

x′
i = ξνxj, x′

j = ξ−νxi, x′
k = xk, k �= i, j. (5.3)

Such set generates the normal subgroup of order Nnn!. The other reflections, if any, are of the
form

x′
j = ξνN/rxj, x′

i = xi for i �= j, (5.4)

where j = 1, . . . , n, (ν,N/r) = 1 and r|q if q > 1. The following theorem can be found in Mc-
Mullen’s book [32, p. 292].

Theorem 5.1. If n ≥ 2, then up to conjugacy within the group of all unitary transformations,
the only finite irreducible unitary reflection groups in Cn which are imprimitive are the groups
G(m,p, n) with m ≥ 2, p|m and (m,p, n) �= (2, 2, 2).

Definition 5.2. A group G of unitary transformations of Cn is called imprimitive if Cn is the
direct sum Cn = E1 ⊕ · · · ⊕ Ek of non-trivial proper linear subspaces E1, . . . , Ek such that the
family {E1, . . . , Ek} is invariant under G.

For the purposes of this work, it is sufficient to consider only the case p = 1. The group
G(N, 1, n), traditionally denoted as γNn , is the group of symmetries of the complex n-cube.
Actually, it is the same as that for the real n-cube [29,31] which is inflated by the factor of N.
In the standard notations [30] the cubic symmetry is denoted as Bn+1 while in the S-T notations
it corresponds to just mentioned group G(N, 1, n) whose exponents di = Ni with i = 1, . . . n
[29,31]. In the typical case of real space with cubic symmetry we have N = 2 (e.g. see Eq.
(A.6) of Appendix A) so that these exponents di coincide with those for Bn+1 in accord with the
exponents for this group listed in the book by Humphreys [30, p. 59], as required.

In order to utilize all these observations efficiently, we need to reobtain the same results
from another perspective. To this purpose, following S-T, we introduce an auxiliary function
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gr(m,p, n) describing the number of reflexion operations made with help of G(m,p, n) which
leave fixed every point of the subspace of dimensionality n− r, r = 0, 1, . . . , n.17 By definition,
g0(m,p, n) = 1. Moreover, let

G(m,p, n; t) ≡
n∑
r=0

gr(m,p, n)tr. (5.5)

On one hand, the above equation serves as the definition of the generating functionG(m,p, n; t),
on another, in view of Eq. (1.8) of Section 1, we can reinterpret the r.h.s. as the Weyl character
formula. The full proof of this fact is given in Part III. Shepard and Todd calculate G(m,p, n; t)
explicitly. Their derivation is less physically adaptable however than that obtained by Solomon,
Ref. [18]. Hence, we would like to discuss Solomon’s results now.

6. Selected exercises from Burbaki (end)

Our main objective at this point is to obtain the explicit form of G(m,p, n; t) defined in
Eq. (5.5) and to explain its physical meaning. To this purpose, let us recall that according to
Theorem 2.2 the differential form ω(p), Eq. (2.4), belongs to the set of G-invariants of the product
S(V ) ⊗ E(V ). The splitting property, Eq. (4.2), of the Poincaré polynomials requires some minor
changes for the present case. In particular, if by analogy with S(V )G decomposition we would
write (S(V ) ⊗ E(V ))G =⊕i,j Si(V )G ⊗ Ej(V )G, then the associated Poincaré polynomial can
be defined by

P((S(V ) ⊗ E(V ))G; x, y) =
∑
i,j≥0

(dimK S
G
i ⊗ EGj )xiyj. (6.1)

Following Solomon [18], by analogy with Eq. (4.6) we introduce

dimK(SGi ⊗ EGj ) = 1

|G|
∑
ϕ∈G

tr(ϕi)tr(ϕj). (6.2)

In order to use this result we need to take into account that
n∑
j=0

tr(ϕj)y
j = det(1 + ϕy), (6.3)

to be contrasted with Eq. (4.8). To prove that this is indeed the case it is sufficient to recall that for
fermions the occupation numbers ji are just 0 and 1. Hence, in view of Eq. (4.13), but accounting
for the fermionic nature of the occupation numbers in the present case, we obtain,

n∑
j=0

tr(ϕj)y
j =

n∑
j=0

⎡
⎣ ∑
j1+j2+···+jn=j

λ
j1
1 · · · λjnn

⎤
⎦ yj =

n∏
i=1

1∑
ji=0

λ
ji
i y

ji =
n∏
i=1

(1 + λiy).

(6.4)

As in the bosonic case, the result, Eq. (6.4), can be obtained using the fermionic path integrals for
n independent particles (say, fermionic oscillators) obeying the Fermi-type statistics. Using Eq.

17 This construction reminds us about the Grassmannians considered in Section 1. We shall take the full advantage of
this observation momentarily.



A.L. Kholodenko / Journal of Geometry and Physics 56 (2006) 1387–1432 1403

(6.2) in (6.1) and taking into account the rest of the results obtained in Section 4, the following
expression for the Poincaré polynomial is obtained

P((S(V ) ⊗ E(V ))G; x, y) = 1

|G|
∑
ϕ∈G

det(1 + ϕy)

det(1 − ϕx)
=

n∏
i=1

1 + yxdi−1

1 − xdi
, (6.5)

in accord with Bourbaki [17]. To check its correctness we can: (a) put y = 0 thus obtaining back
Eqs. (4.4) and (4.11) or, (b) put y = −x thus obtaining identity 1 = 1 between the second and the
third terms above.

Remark 6.1. Since the result, Eq. (6.5), is just the ratio of determinants, its supersymmetric
nature should be clear to everybody familiar with path integrals.

Eq. (6.5), can now be used for several tasks. First, for completeness of presentation, we would
like to recover the major S-T result:

G(m,p, n; t) =
n∏
i=1

(mit + 1), (6.6)

extensively used in theory of hyperplane arrangements [33,34] to be discussed further in Section
9. Taking into account notations introduced in Eqs. (4.12), the above equation produces (for t = 1)
the following result: G(m,p, n; t = 1) = |G| =∏n

i=1 di, which is in accord with Section 4, as
required. Moreover, in view of Eq. (5.5), it allows us to recover gr(m,p, n). After this is done,
we need to discuss its physical meaning.

To recover the S-T results let us rewrite Eq. (6.5) as follows

∑
ϕ∈G

det(1 + ϕy)

det(1 − ϕx)
= |G|

n∏
i=1

(1 + yxdi−1)

(1 − xdi )
(6.7)

and let us treat the right (R) and the left (L) hand sides separately. Following Bourbaki [17], we
put y = −1 + t(1 − x). Substitution of this result to R produces at once

R|x=1 =
n∏
i=1

(di − 1 + t) =
n∏
i=1

(mi + t). (6.8)

To do the same for L requires us to keep in mind that det AB = det A det B and, hence,
det AA−1 = 1 leads to det A−1 = 1/ det A. Therefore, after few steps we arrive at

L|x=1 =
n∑
r=1

hrt
r. (6.9)

Equating L with R, replacing t by 1/T and relabeling 1/T again by t and hl by h̃l = gr(m,p, n)
we obtain the S-T result, Eq. (5.5). To obtain physically useful result we have to take into account
that for the cubic symmetry we had quoted already in the previous section the result: di = iN.
Therefore, let y = −xNq+1 in Eq. (6.5), then we obtain,

P((S(V ) ⊗ E(V ))G; z) =
n∏
i=1

1 − zq+i

1 − zi
. (6.10)

Remark 6.2. The result almost identical to our Eq. (6.10) was obtained some time ago in the
paper by Lerche et al. [35, p. 444, Eq. (4.4)]. To obtain their result, it is sufficient to replace
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zq+i by zq−i. Clearly, such a substitution is not permissible in our case. Nevertheless, some ideas
discussed in the paper by Lerche et al. happen to be helpful in obtaining the correct partition
function for the Veneziano (and Veneziano-like) amplitudes. This will be discussed in detail in
the following two sections.

Taking into account the cubic symmetry in Eq. (6.10) in the limit z = xN = 1 we obtain,

P((S(V ) ⊗ E(V ))G; z = 1) = (q+ 1)(q+ 2) · · · (q+ n)

n!
. (6.11)

Both Eqs. (6.10) and (6.11) have been obtained in Section 1 in a much simpler way so that there
is no need to repeat the arguments presented there.

From Section 1 we know already thatP((S(V ) ⊗ E(V ))G; z) given by Eq. (6.10) is the Poincaré
polynomial for the complex Grassmann manifold. The question arises: is the method of obtaining
such a polynomial specific only for Grassmannians? The answer is clearly “No”! This had been
demonstrated mathematically rigorously by Hiller, Ref. [36], based on earlier fundamental results
by Bernstein, Gelfand and Gelfand, Ref. [37] (BGG). Incidentally, Hiller does obtain our main
result, Eq. (6.10), using BGG formalism, e.g. see Ref. [36, p. 155 (top)]. His derivation is entirely
different and is considerably more complicated than ours.18 The invariant algebra (S(V ) ⊗ E(V ))G

considered by Solomon, Ref. [18], is called “the topological algebra” in Ref. [38]. This reference
explains in detail the universal nature of such an algebra which makes it absolutely indispensable in
the theory of fiber bundles, K-theory, theory of characteristic classes and equivariant cohomology.
We discuss this topic further in Section 9.2.2.

7. Designing Veneziano partition function using algebraic geometry

7.1. General considerations

The paper by Lerche et al., Ref. [35], provides plausible arguments implying that (up to some
unimportant constant) any one-variable Poincaré polynomial can be actually interpreted as some
kind of the Weil character formula. In Part III we shall reach the same conclusions using entirely
different arguments. These are presented in conjunction with the symplectic development of
our formalism. To actually use our result, Eq. (6.10), (or, which is the same, Eq. (1.11)) we do
need to take into account the connection with the Weyl character formula just mentioned. The
recursion relation, Eq. (1.8), provides already an indication that, indeed, the product given in the
r.h.s. of Eq. (1.11) is in fact a polynomial in q whose highest degree is km. Such a polynomial
can be already interpreted as the Weyl character formula. In principle, because of the noticed
connections with the Weyl character formula, one can use the supersymmeric formalism for
reproduction of this formula. Such formalism, developed for any homogenous space (including
that for the Grassmanniann) in Refs. [13,14], can be used for reproduction of the result Eq. (6.10).
In view of the results to be presented in the next section, this is not the most illuminating way
however to arrive at our final destination. Such a derivation will not take into account the “gauge”
freedom and the “gauge fixing” discussed in Section 1. In view of this discussion, it is more
advantageous to take advantage of the fact that the Grassmannian can be mapped into the product
of complex projective spaces of prescribed dimensionalities. At the level of classifying spaces
such a possibility is indicated on page 303 in the book by Bott and Tu, Ref. [9], and proven

18 We encourage our readers to make such a comparison.
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in the book by Husemoller, Ref. [39, p. 297, Proposition 3.1]. There is however another, more
direct, way to obtain the desired result without recourse to the classifying space. In Section 1
we indicated that such a possibility does indeed exist: to this purpose it is sufficient to “fix the
gauge” by choosingm = 1 · 2 · · · k in Eq. (1.11). Then, the Poincaré polynomial for the complex
Grassmannian becomes manifestly decomposable into the product of Poincaré polynomials for
the complex projective spaces of prescribed dimensionalities. Although such a decomposition
is plausible it is a bit restricted. Below we would like to discuss another less restricted way to
arrive at the desired result. By doing so we shall accomplish several tasks. First, we can then
formally use the results by Stone, Ref. [13], for the partition function for a particle with spin in
the magnetic field. Second, and more important for us, by embedding the complex Grassmannian
into the complex projective space of prescribed dimensionality we shall obtain important results
to be used in the rest of this paper.

To embed the Grassmannian into the complex projective space requires several steps. We would
like to describe them now.

7.2. The Plücker embedding

For reader’s convenience we would like to summarize the idea behind such an embedding.
In particular, let V be an n dimensional vector space and let E(V ) be its exterior algebra, as
described in Section 2, so thatE(V ) = ⊕l

k=1Ek(V ) where 1 ≤ k ≤ l. While the spaceEl(V ) is one

dimensional, the dimensionality of the subspaceEk(V ), is known to be N = dimEk(V ) =
(
l

k

)
.

This should be contrasted with the dimensionality of the usual vector subspace which is just k. The
number just produced reminds us about the number of subspaces of the (complex) Grassmannian
G(k, l) we have discussed in Section 1. This means that the totality of k-dimensional subspaces
of l-dimensional vector space V can be identified with dimEk(V ). Let now Êk(V ) be a particular
member of the exterior algebra so that if w1, . . . ,wk represents a set of linearly independent
vectors defining the chosen k-dimensional subspace, then Êk(V ) = w1 ∧ · · · ∧ wk. Clearly, if
wi ∈ Ci, then the product w1 ∧ · · · ∧ wk represents some point in CN and, at the same time, it
represents some particular subspace of the vector space V and, as such, can be used to describe
the Grassmannian. Moreover, if e1, . . . , el is an ordered basis for V, then there are some k × l

matrices M = (ai,j) such that

wj =
l∑
i=1

ai,jei, (7.1)

and, accordingly,

w1 ∧ · · · ∧ wk =
∑

(i1,...,ik)

mi1,...,ikei1 ∧ · · · ∧ eik , (7.2)

where mi1,...,ik is made out of k × k minors of the matrix M formed by columns of M with
indices i1, . . . , ik. Since both w1 ∧ · · · ∧ wk and ei1 ∧ · · · . ∧ eik are some points in CN, Eq. (7.2)
can be interpreted as an equivalence relation and thus provides a projective embedding of the
Grassmannian into CPN−1. The r.h.s. of Eq. (7.2) represents a kind of a basis expansion of the
tensor w1 ∧ · · · ∧ wk so that mi1,...,ik are some (actually, Plücker) coordinates with respect to the
standard basis. Suppose we have another tensor w′

1 ∧ · · · ∧ w′
k and interested in relating it with
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w1 ∧ · · · ∧ wk. This can be achieved if there is another k × k matrix A such that M = AM′ and,
accordingly,

mi1,...,ik = [det A]m′
i1,...,ik

. (7.3)

Finally, following Fulton, Ref. [40, p. 108], the Sylvester theorem (discovered in 1851) should
be used to arrive at Plücker relations. These relations provide guarantee that such an embedding
of the Grassmannian is permissible. To describe the Sylvester theorem we should notice that,
actually, by symmetry the matrix A is of the same kind as the k × k minor of M. That is it should
be a k × k matrix. Because of this, the Sylvester theorem can be stated as follows

Theorem 7.1 (Sylvester). Let M and N be any k × k matrices and let 1 ≤ λ ≤ k, then

[det M][det N] =
∑

det M′det N′, (7.4)

where the sum is taken over all pairs of matrices M′ and N′ obtained from M and N by interchang-
ing a fixed set of λ columns of N with any λ columns of M, preserving the ordering of the columns.

This concludes our description of the Plücker embedding. For the goals we would like to
accomplish, such an embedding is not sufficient. Hence, now we would like to discuss the Segre
embedding.

7.3. The Segre embedding

The idea of this kind of embedding is rather simple and has its origins in a simple problem which
can be formulated as follows. If the complex space C2 can be thought of as a Cartesian product
C1 × C1, is it possible to construct, say, CP2 as CP1 × CP1? Our experience with the Plücker
embedding suggests that this may be possible if we look at the operation “×” group-theoretically.
Specifically, let {z0, . . . , zn} represent a point in CPn while {z′0, . . . , z′m} represent a point in
CPm,19 then the Segre embedding sn,m : CPn × CPm → CPN,N = (n+ 1)(m+ 1) − 1, is
described explicitly as

sn,m : ({z0, . . . , zn}, {z′0, . . . , z′m}) → ({· · · , ziz′j, · · ·}). (7.5)

Let Rij = ziz
′
j , then the analogs of Plücker relations in the present case are the conditions

RijRkl = RilRkj. (7.6)

Finally, we need to describe the Veronese embedding.

7.4. The Veronese embedding

It can be described as follows. Let {z0, . . . , zk} be a point in CPk and let vn be the map

vn : CPk → CPN, where N =
(
n+ k

k

)
− 120, explicitly described as

vn : {z0, . . . , zk} → {x0, . . . , xN}, (7.7)

19 One should keep in mind that points in the projective space are the equivalence classes. The notations in the text refer
to some set of coverings of CPn by Cn+1′

s such that at least one of zi’s is strictly nonzero, as usual.
20 In the literature on algebraic geometry, e.g. see Ref. [41], one finds an alternative way of writing N, e.g. N =(
n+ k

n

)
− 1 but, in view of Eq. (1.5), both are the same numbers.
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with xi = x
i0
0 x

i1
1 · · · xikk ≡ XI and i0 + · · · + ik = n, then this is the Veronese map provided that

for any quadruple of multiindices I, J,K and L the following relation

XIXJ = XKXL, (7.8)

holds.

7.5. From analysis to synthesis

Being armed with these descriptions of the respective embeddings we are ready now to use all
three of them. We begin with observation that the dimensionalities of projective spaces in the case
of Plücker and Veronese embeddings can be made the same due to the same type of combinatorics
in both cases. This happens when we require: (Veronese) n+ k = l (Plücker). Evidently, relations
of the type given by Eq. (7.8) will be also satisfied by the Plücker relations (since in both cases we
are dealing with the same multiindex sets). Hence, we can identify point by point both projective
spaces. It should be clear that this can be done only with some restriction on ordering of indices but
this is sufficient for our physical purposes. We shall discuss this topic further in the next subsection.
Next, we can think about making a projective space of dimensionality N out of projective spaces
of smaller dimensionality using the Segre embedding. This fact is important physically since it
is connected with the fusion rules for scattering (e.g. Veneziano) amplitudes. Suppose, we would
like to compose a larger space out of complex projective spaces of dimensionalities i0, . . . , ik.
Then, the Segre embedding can be described schematically as the follows:

Vi0 × · · · × Vik → Vi0 ⊗ · · · ⊗ Vik causing,

CP(Vi0 ) × · · · × CP(Vik ) ↪→ CP(Vi0 ⊗ · · · ⊗ Vik ), (7.9)

with dimensionality of the final complex projective space being equal to N = (i0 + 1)(i1 +
1) · · · (ik + 1) − 1. To compare this dimensionality with that for, say, the Veronese-type space

we have to require (i0 + 1)(i1 + 1) · · · (ik + 1) =
(
n+ k

k

)
. In complete agreement with argu-

ments made in Section 1, if we choose n = 1 · 2 · 3 · · · k and then identify il with n/l, provided
that 0 < l ≤ k, we indeed obtain the required decomposition. This result allows us to think about
the partition function for the Veneziano amplitudes in terms of the spin model which is the some
kind of reduction of the rigid string model proposed while ago by Polyakov [15]. Unlike his
model, our (spin chain) model is exactly solvable. The noticed connection is important in view
of the potential physical applications: in Ref. [42], based on our earlier developed variant [16] of
the Polyakov rigid string model, interesting applications to QCD were considered. Since the rigid
string model proposed by Polyakov is also of Grassmann-type (albeit, apparently, for different
reasons) it is of interest to study its reduction to the exactly solvable spin chain models.

7.6. Some physical applications

7.6.1. The Poincaré polynomial and the partition function
Although the arguments presented above are standard, they cannot be used for our immediate

tasks. This is so because of the fact that in our case we have to consider the differential forms.
Specifically, let us consider a differential form of the type df0 ∧ df1 ∧ · · · ∧ dfk with entries fi,
f2, etc. considered as independent variables. In which case we are dealing with just one differential
form. Let now f0 = z

n0
0 , f2 = z

n2
2 , . . . , fk = z

nk
k provided that n0 + n1 + · · · + nk = n. Clearly,
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under such conditions we shall obtain

(
n+ k

k

)
different differential forms which can be looked

upon as Plücker embedding of the space (z0, . . . , zk) into the space of differential forms of the
type dzn0

0 ∧ dzn1
1 ∧ · · · ∧ dznkk � z

n0
0 z

n1
1 · · · znkk dz0

z0
∧ · · · ∧ dzk

zk
. Coordinates zn0−1

0 z
n1−1
1 · · · znk−1

k

(taken in a prescribed order) can be viewed as Plücker coordinates so that, apparently, we have
essentially obtained the Plücker embedding. This is not quite the case yet. To obtain the desired
result several additional steps are needed. For instance we can look at projective transformations
of the type z0 → lz0, etc. Upon such a replacement the combination dz0

z0
will stay the same while

the combination zn0
0 z

n1
1 · · · znkk will formally change into lnzn0

0 z
n1
1 · · · znkk and is not invariant with

respect to such transformations. To correct the problem we have to divide zn0
0 z

n1
1 · · · znkk by the

combination which scales the same way. In view of results of Part I, this will be the Fermat variety
F(z) = zn0 + · · · + znk . The Poincaré polynomial obtained in Eq. (6.11) in the limit z → 1 counts
the number of such distinct invariant forms. This topic will be discussed further in Section 9 where
we define the projective toric varieties and in Part III. The rescaling just described subdivides the
complex projective space into equivalence classes. This procedure is essentially equivalent to the
Plücker embedding. At the same time, in view of invariance of the combination dz0

z0
∧ · · · ∧ dzk

zk
with respect to scale transformation, one can think about the equivalence classes only between
the monomials of the type zn0

0 z
n1
1 · · · znkk and, from this point of view, one obtains the Veronese

embedding. Since combinatorially in both cases we have been working with the same objects,
not surprisingly, the number of equivalence classes in both cases came out the same. Physically,
however, it is more advantageous to use the Poincaré polynomial for the Veronese embedding
since, as discussed in Section 1, the Poincaré polynomial for the complex projective space of
dimensionality N (up to numerical prefactor) coincides with the partition function for a particle
with spin N + 1 placed into constant magnetic field. Such a partition function was obtained by
Stone using N = 2 finite dimensional supersymmetric model. In our case we are interested not
only in the partition function counting the number of entries (summands) in the total Veneziano
amplitude but also in the possibility of reobtaining these amplitudes with help of this partition
function. If this can be achieved, we might consider the Veneziano model as exactly solved. Since
we know already that such a partition function up to a constant coincides with the Weyl character
formula, we must look for the group-theoretic aspects of results we have just obtained. This is
done in the next subsection and the section which follows.

7.6.2. Connections with KP hierarchy
For the sake of space we shall assume familiarity of our readers with the theory of symmetric

functions. Excellent exposition can be found in Ref. [43], while the basic facts can be found in
Ref. [44]. From these sources, it is known that the Schur functions sλ(x) play the central role in
this theory in view of their mutual orthogonality with respect to carefully chosen scalar product
〈, 〉, i.e. 〈sλ, sµ〉 = δλ,µ.21 To make a connection with previous discussion, let us consider the
following generating function

f (z) = 1

N!
(z0 + · · · + zk)

N =
∑

(n0,n1,...,nk )
N=n0+n1+···+nk

1

n0!n1! · · · nk!z
n0
0 · · · znkk ≡

∑
λ�N

cλzλ, (7.10)

21 We have suppressed the arguments, e.g. x = {x1, x2, . . . xm}, in this product for brevity.



A.L. Kholodenko / Journal of Geometry and Physics 56 (2006) 1387–1432 1409

where notations introduced in Section 1 were used.22 Such an expansion can be considered as
some kind of a basis expansion in which the basis vectors belong to the set zλ. From previous
subsection we know that such an expansion makes sense since the monomials zλ represent well
defined equivalence classes in complex projective space. In general, however, such monomials
are not orthogonal with respect to the scalar product just introduced. Evidently, each of these
monomials can be re expanded with help of the Schur polynomials, i.e.

zλ =
∑
µ�N

c̃µ,λsµ. (7.11)

But from the book by Miwa et al, Ref. [45, p. 90], we find out that under such circumstances zλ

represents the tau function of the KP hierarchy. Using this observation, perhaps superimposed with
our earlier treatment of the Witten–Konsevich model, Ref. [7], one can develop, in principle, some
quantum mechanical model whose partition function will coincide with the Poincaré polynomial
discussed earlier. There is much faster way however to arrive at the final destination. It is described
in the next section. In the meantime, we would like to provide some qualitative arguments in
favour of such an alternative approach. To this purpose, using Eq. (7.11) in (7.10) we can expand
f (z) in terms of the orthogonal basis. Suppose now that there is an operator such that sµ is its
eigenfunction. Hence, f (z) is also an eigenfunction of such an operator. Since the Hilbert space
is finite dimensional in the present case, we may look, using the analogy with the commutator
algebra for angular momentum, for some kind of raising and lowering operators. If they indeed
exist, then, as for the angular momentum (or spin), there will be the upper and the lower vacuum
states. The dimension of the Hilbert state in this case can be determined straightforwardly from
the partition function whose HamiltonianH = Bz · Sz where B is some external “magnetic” field
whose direction, as usual, is chosen to be along the “z-axis”. The partition function Z is obtained
now in a standard way as

Z = tr(exp(−βH)), (7.12)

and coincides with the Weyl character formula. In the limitBz → 0 one obtains the dimensionality
of the Hilbert space as expected. The same result can be obtained differently. For this purpose
it is sufficient to choose the Hamiltonian as H = S2 − const where the const is determined by
some assigned fixed eigenvalue for the square of the total spin (or angular momentum). Under
such circumstances taking trace in Eq. (7.12) using eigenfunctions of H will also produce the
dimensionality of the Hilbert space. In the next section we shall implement the first procedure
explicitly. To do so, we need to describe a model for the complex projective space. It is known
that there is number of such models [46]. So, we have to select one of them which is the most
convenient for us. It will be used also in Part III.

7.6.3. Description of particular model describing the projective space
To describe the model, we notice that each complex line in Cn+1 passing through the origin

can be characterized by the unit vector ω0
ν = ων

|ων| , ν = 0, . . . , n, so that parametrically it can

be represented as zν = ω0
νξ with ξ being some complex parameter. By definition, the projective

space CPn is made of equivalence classes of points z ∈ Cn+1\{0} such that z′ = λz with λ being
some nonzero complex number. In the present case such a definition essentially implies λ = ξ.

22 We have suppressed an auxiliary variable, say t, which is normally used in generating functions. Clearly, it can be
restored whenever it is needed.



1410 A.L. Kholodenko / Journal of Geometry and Physics 56 (2006) 1387–1432

Consider now a unit sphere of real dimension 2n+ 1 living in Cn+1 and centered at the arbitrarily
chosen origin. It is characterized by the equation

∑n
ν=0 zνz̄ν = 1. The projective space CPn can

be realized as the set of points originating from the intersection of such a sphere with the complex
line just described. This results in an equation

|ξ|2
n∑
ν=0

|ω0
ν |2 = 1, (7.13)

from which it follows that |ξ|2 = 1 and, hence, ξ = eiϕ. Thus, the points of Cn+1 can be
parametrized by ω0

νeiϕ with ω0
ν being some nonnegative numbers subject to the constraint∑n

ν=0(ω0
ν)2 = 1. For the purposes of our discussion sometimes it will be convenient to redefine

(ω0
ν)2 as tν so that in terms of such variables the constraint describes a simplex instead of a sphere.23

Two points of Cn+1 differing by their phase factors belong to the same equivalence class so that the
whole Cn+1 is divided into equivalence classes which are labeled byω0′

ν s. Becauseω0′
ν s are subject

to the constraint, the dimensionality of thus formed projective space CPn is n. Evidently, earlier
discussed quotient zn0

0 z
n1
1 · · · znkk /F (z) will remain invariant with respect to such parametrization.

This fact was crucial for reconstruction of the Veneziano amplitudes from periods of the Fermat
varieties. Further implications of this invariance will be discussed in Section 9 and in Part III.

Remark 7.2. From Appendix A, part d, it follows that the action of elements of pseudo-reflection
groups on some prescribed positive definite Hermitian form leaves this form invariant. This fact
can be taken as defining property of the pseudo-reflection groups. The model of projective space
just described is compatible with actions of elements of the pseudo-reflection groups. One can
say as well that such groups can exist only in certain spaces thus reflecting properties of these
spaces. This fact will be analyzed further in Section 9 (also in connection with Remark 7.4). In
fact, all results of previous sections are just consequences of this observation.

Remark 7.3. From the previous remark it follows that the action of group elements is taking
place component wise. This fact will be used in the next section.

Remark 7.4. The quadratic form
∑n
ν=0 zνz̄ν = 1 can be extended to

∑n
ν=0 zνz̄ν = zn+1z̄n+1.

For zn+1z̄n+1 �= 0 this form can be reduced back to the original. However, if we keep it with this
extra term, it becomes an invariant for groups of isometries of the complex hyperbolic space.
Such a space was analyzed thoroughly by Goldman, Ref. [47]. Its profound physical significance
will be discussed in Section 9.

8. Exact solution of the Veneziano model

8.1. From Witten to Lefschetz

We begin with the following observations. First, given that Veneziano (and Veneziano-like)
amplitudes are periods of the Fermat (hyper)surfaces, the associated with such periods invariant
differential forms are living in the complex projective space. The theorem by Kodaira asserts that
a compact complex manifold X is projective algebraic if it is a Hodge manifold. For the sake of
space, we refer our readers to the monograph by Wells, Ref. [48], for more information. We shall
use this reference extensively in what follows.

23 The simplex was used already in Part I. It will be further discussed in Section 9 and in Part III.
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Second, the Theorem 2.1.7 of this reference states that under conditions of Kodaira’s theorem
the manifold X can be embedded into complex Grassmannian so that the differential forms will
be also living in the Grassmannian as discussed earlier.

Third, for a complex Hermitian manifold X let Ep+q(X) denote the set of complex-valued
differential forms (sections) of the type (p, q), p+ q = r, living on X. The Hodge decomposition
insures that Er(X) =∑p+q=r Ep+q(X). The Dolbeault operators ∂ and ∂̄ act on Ep+q(X) as fol-

lows ∂ : Ep+q(X) → Ep+1,q(X) and ∂̄ : Ep+q(X) → Ep,q+1(X). The exterior derivative operator
is defined as d = ∂ + ∂̄. Let now ϕp,ψp ∈ Ep(X) where Ep(X) belongs to the elliptic complex
E∗(X) =⊕r

p=0 Ep(X) of differential forms on X forming a complex vector space of dimension

r + 1.24 By analogy with traditional quantum mechanics one can define (using Dirac’s notations)
the inner product

〈ϕp|ψp〉 =
∫
M

ϕq ∧ ∗ψ̄p, (8.1)

where the bar means the complex conjugation and the star ∗ means the Hodge conjugation as
usual. The period integrals, e.g. those for the Veneziano-like amplitudes, are expressible through
such inner products [48]. Fortunately, such a product possesses properties typical for the finite
dimensional quantum mechanical Hilbert spaces. In particular,

〈ϕp|ψq〉 = Cδp,q and 〈ϕp|ϕp〉 > 0, (8.2)

where C is some known positive constant.
Fourth, with respect to such defined scalar product it is possible to define all conjugate operators,

e.g. d∗, etc. and, most importantly, the Laplacians

� = dd∗ + d∗d, � = ∂∂∗ + ∂∗∂, �̄ = ∂̄∂̄∗ + ∂̄∗∂̄. (8.3)

All this was known to mathematicians before Witten’s work [49]. The unexpected twist occurred
when Witten suggested to extend the notion of the exterior derivative d. Within the de Rham
picture (valid for both real and complex manifolds) let M be a compact Riemannian manifold and
K be the Killing vector field which is just one of the generators of isometry of M. Then Witten
suggested to replace the exterior derivative operator d by the extended operator

ds = d + si(K). (8.4)

Here s is real nonzero parameter conveniently chosen. Witten argued that one can construct the
modified Laplacian by replacing conventional� given in Eq. (8.3) by�s = dsd

∗
s + d∗

s ds. This is
possible if and only if d2

s = d∗2
s = 0 or, since d2

s = sL(K), where L(K) the Lie derivative along
the field K, acting on the corresponding differential form, vanishes. The details are beautifully
explained in the much earlier paper by Frankel [50] to be discussed in Part III. Atiyah and
Bott, Ref. [22], observed that replacement of the operator d by ds causes replacement of the
de Rham cohomology by the equivariant cohomology. This topic is mentioned in Ref. [6] and
will be discussed in more detail in Part III in connection with designing of the symplectic model
reproducing the Veneziano amplitudes. In this work we shall use more traditional methods however
based on Eq. (8.3).

24 Actually, one should consider instead a more complicated object E∗(X,E) of differential forms with coefficients in E
where E is the Hermitian vector bundle over X. This would lead us to the discussion involving the sheaf theory, Čhech
cohomology, etc. These are beautifully explained in Ref. [46]. Since the final results which we obtain are not going to be
affected, we are not going to complicate matters by these intricacies.
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Looking at these equations and following Refs. [26,51,52] we define the (Dirac) operator ∂́ =
∂̄ + ∂̄∗ and its adjoint with respect to scalar product, Eq. (8.2). Then, use of the above references
allows us to determine the dimension Q of the quantum Hilbert space for which the scalar product,
Eq. (8.2), was defined. It is given by

Q = ker ∂́ − co, ker ∂́∗ = Q+ −Q−. (8.5)

We would like to arrive at the same result differently using earlier introduced partition function,
Eq. (7.12). To this purpose we notice that according to Theorem 4.7. in the book by Wells
[48] we have � = 2� = 2�̄ with respect to the Kähler metric on X. Next, according to the
Corollary 4.1.1. of the same reference � commutes with d, d∗, ∂, ∂∗, ∂̄ and ∂̄∗. From these facts
it follows immediately that if we, in accord with Witten, choose � as our Hamiltonian, then
the supercharges can be selected as Q+ = d + d∗ and Q− = i(d − d∗). Evidently, this is not
the only choice as Witten also indicates. If the Hamiltonian H is acting in finite dimensional
Hilbert space one may require axiomatically that: (a) there is a vacuum state (or states) |α〉 such
that H |α〉 = 0 (i.e. this state is the harmonic differential form) and Q+|α〉 = Q−|α〉 = 0. This
implies, of course, that [H,Q+] = [H,Q−] = 0. Finally, once again, following Witten, we require
that (Q+)2 = (Q−)2 = H . Then, the equivariant extension, Eq. (8.4), leads to (Q+

s )2 = H + 2 is
L (K). Fortunately, we can avoid this extension by noticing that the above supersymmetry algebra
can be extended. This can be done with help of the Lefschetz isomorphism theorem whose exact
formulation is given as Theorem 3.1.2 in Wells, Ref. [48]. We shall only use some parts of this
theorem in our work. In particular, using notations of Ref. [48], we introduce the operator L
commuting with � and its adjoint L∗ ≡ Λ. It can be shown [48, p. 159], that L∗ = w ∗ L∗
where, as before, ∗ denotes the Hodge star operator and the operator w can be formally defined
through the relation ∗∗ = w [48, p. 156]. From these definitions it should be clear that L∗ also
commutes with � on the space of harmonic differential forms (in accord with page 195 of [48]).

As part of preparation for proving of the Lefschetz isomorphism theorem, it can be shown
[48], that

[Λ,L] = B and [B,Λ] = 2Λ, [B,L] = −2L. (8.6)

This commutator algebra (up to a constant) coincides with the sl2(C) Lie algebra given in the
canonical form, e.g. see Ref. [53, p. 37], as follows

[h, e] = 2e, [h, f ] = −2f, [e, f ] = h. (8.7)

Comparison between the above two expressions leads to the isomorphism of Lie algebras, i.e. the
operators h, f and e act on the vector space {v} to be described below while the operators Λ,L
and B obeying the same commutation relations act on the space of differential forms.

Remark 8.1. For such an isomorphism to exist the elliptic complex should be finite dimensional.
This requirement of finite dimensionality comes from important result by Serre to be described
in the next subsection

8.2. From Lefschetz to Veneziano via Serre and Ginzburg

Now we would like to recall, e.g. Ref. [53], p. 25, that all semisimple Lie algebras are made
of copies of sl2(C). Assuming our readers familiarity with the Lie algebras and, in particular,
with semisimple Lie algebras, we would like now to adopt the Lefschetz correspondence to our
needs. In particular, let z1, . . . , zn denote a basis of the vector space V in Cn. In terms of this basis
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consider a polynomial f (z) given by

f (z) = f (z1, . . . , zn) =
∑

i

λizi ≡
∑

i

λi1...inz
i1
1 · · · zinn , (λi, z

im
m ∈ C, 1 ≤ m ≤ n).

(8.8)

Let z be treated as a column vector (or, better, as a set of column vectors, e.g. see Section 7.1).
Then, by definition (e.g. see Ref. [54] compatible with earlier made Remark 7.3) we obtain,
M ◦ f (z) = f (Mz) ≡ f (Mz1, . . . ,Mzn), whereM ⊂ G. Here G belongs to some matrix group.
In particular, let M ⊂ sl2(C), then following Dixmier [55, Chapter 8], we introduce operators
h =∑n

α=1 aαhα, e =∑n
α=1 bαeα, f =∑n

α=1 cαfα. Provided that the constants are subject to
the constraint: bαcα = aα, the commutation relations between the operators h, e and f are exactly
the same as respectively for B, Λ and L. To avoid unnecessary complications, we choose aα =
bα = cα = 1.

Next, following Serre [56, Chapter 4], we need to introduce the primitive vector (or element).
This is the vector v such that hv = λv but ev = 0. The number λ is the weight of the module
Vλ = {v ∈ V |hv = λv}. If the vector space is finite dimensional, then V =∑λ V

λ. Moreover,
only if Vλ is finite dimensional it is straightforward to prove that the primitive element does exist
in accord with Remark 8.1. The proof is based on observation that if x is the eigenvector of h
with weight λ, then ex is also an eigenvector of h with eigenvalue λ− 2, etc. Moreover, from the
book by Kac [57, Chapter 3], it follows that if λ is the weight of V, then λ− 〈λ, α∨

i 〉αi is also the
weight with the same multiplicity. Since according to Eq. (A.2) of Appendix A 〈λ, α∨

i 〉 ∈ Z, Kac
introduces another module:U =∑k∈Z V

λ+kαi . Such a module is finite for finite reflection groups
and is infinite for the affine reflection groups. We would like to argue that for our purposes, in
view of Theorem 2.2 by Solomon it is sufficient to use only finite reflection (or pseudo-reflection)
groups.

Remark 8.2. It should be remembered at this point that in Solomon’s theorem the requirement
of finiteness of the (pseudo)reflection group is stated explicitly.

Remark 8.3. From the book by Kac, it should be clear that the infinite dimensional version
of the module U straightforwardly leads to all known string-theoretic results. Development of
connections with KP hierarchy discussed in Section 7.2 also ultimately leads to the conventional
string-theoretic formulations. In the case of CFT this is essential and will be explained further in
Section 9 and in Part IV, but for calculation of the Veneziano-like amplitudes this is not essential.
By accepting the traditional option we loose connections with the Lefschetz isomorphism theorem
(relying heavily on the existence of primitive elements) and with the Hodge theory in its traditional
form. The infinite dimensional extensions of the Hodge-de Rham theory involving loop groups,
etc. relevant for the CFT can be found in Ref. [58,59]. Fortunately, they are not needed for the
purposes of this work. Hence, below we work only with finite dimensional spaces.

In particular, let now v be a primitive element of weight λ. Then, following Serre, we let
vn = 1

n!e
nv for n ≥ 0 and v−1 = 0, so that

hvn = (λ− 2n)vn, evn = (n+ 1)vn+1, fvn = (λ− n+ 1)vn−1. (8.9)

Clearly, the operators e and f are the creation and the annihilation operators according to existing in
physics terminology while the vector v can be interpreted as the vacuum state vector. The question
arises: how this vector is related to earlier introduced vector |α〉? Before providing the answer
to this question we need, following Serre, to settle the related issue. In particular, we can either:
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(a) assume that for all n ≥ 0 the first of Eq. (8.9) has solutions and all vectors v, v1, v2, . . ., are
linearly independent or (b) beginning from some m+ 1 ≥ 0, all vectors vn are zero, i.e. vm �= 0
but vm+1 = 0. The first option leads to the infinite dimensional representations associated with
affine Kac-Moody algebras just mentioned. The second option leads to the finite dimensional
representations and to the requirement λ = mwith m being an integer. We shall adjust this integer
to our needs shortly below. In the meantime, following Serre, this observation can be exploited
further thus leading us to the crucial physical identifications. Serre observes that with respect to
n = 0 Eq. (8.9) possess a (“super”) symmetry. That is the linear mappings

em : Vm → V−m and fm : V−m → Vm, (8.10)

are isomorphisms and the dimensionality ofVm andV−m are the same. Serre provides an operator
(the analog of Witten’s F operator) θ = exp(f ) exp(e) exp(−f ) such that θ · f = −e · θ, θ · e =
−θ · f and θ · h = −h · θ. In view of such an operator, it is convenient to redefine the h oper-
ator: h → ĥ = h− λ. Then, for such redefined operator the vacuum state is just v. Since both
L and L∗ = Λ commute with the supersymmetric Hamiltonian H and, because of the group
isomorphism, we conclude that the vacuum state |α〉 for H corresponds to the primitive state
vector v, moreover, −m ≤ n ≤ m in Eq. (8.9). Now we are ready to apply yet another isomor-
phism following Ginzburg, Ref. [21, pp. 205-206].25 To this purpose we make the following
identification

ei → ti+1
∂

∂ti
, fi → ti

∂

∂ti+1
, hi → ti

∂

∂ti
+ 2

(
ti+1

∂

∂ti+1
− ti

∂

∂ti

)
, (8.11)

i = 0, . . . , m. Such operators are acting on the vector space made of monomials of the type

vn → FN = 1

n0!n2! · · · nk! t
n0
0 · · · tnkk , (8.12)

where n0 + · · · + nk = N. This result is in accord with. Eq. (7.10). Moreover, now we have
analogs of Eq. (8.9). These are given by

hi ∗ Fn(i) = 2(ni+1 − ni)Fn(i), ei ∗ Fn(i) = 2niFn(i+ 1),

fi ∗ Fn(i) = 2nm+1Fn(i− 1), (8.13)

where Fn(i) is a part of the wave function relevant to action of operators ei, fi, hi. Clearly, at this
point one should make the following identifications:m(i) − 2n(i) = 2(ni+1 − ni), 2ni = n(i) + 1
and m(i) − n(i) + 1 = 2ni+1 in order to be consistent with Eq. (8.9). Next, we define the total
Hamiltonian: h =∑k

i=0 hi
26 and redefine individual Hamiltonians as described above. This

causes m(i) to be effectively zero in the above equations. The operators ∂
∂ti

act on the total set of

monomials 1, t, 1
2! t

2, . . . , 1
N! t

N . Such monomials are forming the basis of vector space analogous
to νn. This leads to identification ofm(i) withN ∀i. Incidentally, N is the total energy according to
Veneziano condition, Eq. (1.4). Based on these remarks let us consider an action of such redefined

25 Unfortunately, the original source contains very minor mistakes (misprints). These are easily correctable. The corrected
results are given in the text.
26 In accord with general rules of construction of the Lie algebras out of copies of sl2(C) thus designed Hamiltonian

represents the standard action of slk(C) on the vector space made out of monomials, Eq. (8.12).
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total Hamiltonian on the individual wave function F̂N of the type given by Eq. (8.12). Using Eq.
(8.13) we obtain,

hF̂N = 2(nk − n0)F̂N. (8.14)

Since 0 ≤ ni ≤ N ∀iwe obtain: 0 ≤ |nk − n0| ≤ N. In view of this Eq. (8.14) becomes very much
analogous to the equation for the z-component of the angular momentum (or spin) of magnitude N.
Unlike the case of angular momentum, here there is an additional degeneracy which we would like
to describe now. To this purpose we need to describe in some detail the wave functions entering
Eq. (8.14).

Firstly, we notice that the operators introduced in Eq. (8.11) do not change the total power of
monomials of the type given in Eq. (8.12). This is in accord with the requirement that for such
monomials the constraint n0 + · + nk = N should always hold. Next, for completeness of our
presentation we would like to restore the subtracted term in the total Hamiltonian. Then, its action
on the monomial 1

N! t
N
0 produces an eigenvalue −N. Furthermore, consider now another monomial

1
(N−1)! t

N−1
0 t1. The action of a Hamiltonian on such a monomial will produce an eigenvalue

−N + 2 as required [56]. But the same eigenvalue will be produced also by the monomials of the
type 1

(N−1)! t
N−1
0 ti, i = 2, 3, . . . , k. Hence we have obtained a degeneracy. The next generation of

wave functions can be constructed as follows 1
(N−2)! t

N−2
0 titj,

1
(N−3)! t

N−3
0

1
2! t

2
i tj , etc. This process

will end when we shall reach the situation when we would have t00 . . .Such wave function will have
an eigenvalue zero. Next, we can obtain another series of wave functions which begins with 1

N! t
N
k .

To construct this series we have to switch signs in the corresponding equations according to rules
implied by Eq. (8.10). These two series exhaust all the combinations satisfying n0 + · · · + nk =
N. Clearly, the number of such combinations N =

(
N + k

k

)
in accord with Section 1. Since all

wave functions given by Eq. (8.12) possess the same energy N, the partition function, Eq. (7.12),
in the limit β → 0 reproduces N as required. Since thus constructed wave functions are in one-to
one relation with the corresponding Veneziano amplitudes, obtained results provide a complete
solution of the Veneziano model.

8.3. Connections with chaotic dynamical systems and problem of zeros of the Riemann zeta
function

Some of our readers may ask at this point the following question: all this is fine but what kind
of physics the Hamiltonian introduced in Eq. (8.11) represents? We would like to address this
important issue now. First, even if this Hamiltonian would be a formality, because of the Lefschets
isomorphism theorem we can always go back to the traditional supersymmetric formulation of
the problem. Such a formulation, although physically useful, leaves certain aspects of the problem
undetected. This is especially true in the present case since by using the supersymmetric formula-
tion the fact that four-particle Veneziano amplitude can be equivalently presented as the product
of Riemann zeta functions (e.g. see Eq. (1.12) of Part I) seems only as a curiosity. This curiosity
happens to be intrinsically related to Hamiltonians of the type given by Eq. (8.11). The simplest
Hamiltonian of this type is H = xp. It was recently considered by Berry and Keating, Ref. [60],
and, more comprehensively, in Ref. [61]. These authors notice that at the classical level the system
described by such Hamiltonian has a hyperbolic point at the origin of the (x, p) phase space plane.
The trajectories x(t) = x(0)exp(t) and p(t) = p(0)exp(−t) are uniformly unstable with stretching
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in x and contraction in p. The motion has the desired lack of time reversal symmetry so that the
orbit cannot be retracted.27 Quantization of classically chaotic systems is currently in the focus
of attention in physics literature [63] and in the case of the system just described can be directly
connected with zeros of the Riemann zeta function and, hence, with the Riemann hypothesis about
these zeros [60]. Okubo [64] noticed the Lorentz invariance of two dimensional Hamiltonians of
the type given by Eq. (8.11) and made a conjecture about some intrinsic connections between the
Lorentz invariance and the Riemann hypothesis. The Lorentz invariance ofN = 2 supersymmet-
ric quantum mechanics was noticed already in the seminal paper by Witten, Ref. [49, p. 662].
No connections with the Riemann hypothesis were made however in his paper. We shall discuss
further the issues related to the Lorentz invariance in Section 9, mainly elaborating on Remark
7.4 made earlier.

In mathematics literature, the ergodic properties of the dynamical systems associated with
semisimple Lie groups and algebras have received considerable attention recently, e.g. see mono-
graph by Feres, Ref. [65]. In our opinion, the dynamical issues in the present case intrinsically are of
the number-theoretic nature. The number-theoretic aspects of the Veneziano amplitudes discussed
in our earlier publication, Ref. [10], provide a natural link between dynamics, Rieamnn’s zeta func-
tion and, more general, L-functions. For the sake of space, we refer our readers to just mentioned
literature containing, in addition, a large number of relevant references of major importance.

9. The theorem by Serre and its physical significance

9.1. Statement of the theorem and physically motivated proof

In the previous sections we repeatedly mentioned the theorem by Serre. In this section we
would like to state the theorem explicitly, to explain using physical arguments its proof, and to
discuss some physical consequences of this theorem not mentioned thus far.

Before stating the theorem, we need to recall that any linear algebraic group G is isomorphic
to a closed subgroup of GLn(V,K) acting on a vector space V of dimension n ≥ 1 by matrices
M whose entries belong to any closed number field K such as C or p-adic [66]. With such an
observation, we are ready to formulate the theorem, e.g see Bourbaki, Ref. [17], Chapter 5,
paragraph 5 (problem set #8).

Theorem 9.1 (Serre [67]). Let V be a vector space of dimension n over the field K and let
S(V )G be a graded ring of invariants of the group G acting on symmetric algebra S(V ) (defined
in Section 2). Then S(V )G is a polynomial algebra if and only if G is finite group generated by
pseudo-reflections.

Remark 9.2. It is important that the theorem by Serre involves only finite pseudo-reflection
groups. This requirement is consistent with earlier stated Theorem 5.1 by McMullen. Below we
shall mention the conditions under which it should be amended in order to reproduce the results
of CFT.

Although the proof of this theorem can be found in many places, e.g. see Refs. [68,69] or the
original paper by Serre, Ref. [67], we would like to provide arguments leading to a physically
motivated proof.

27 In Ref. [62] it is demonstrated that the Hamiltonian H = xp is canonically equivalent to the Hamiltonian for the
“inverted” harmonic oscillator:H = 1

2 (P2 −Q2), obtained upon the symplectic rotation of the type: x = P+Q√
2
, p = P−Q√

2
.
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To begin, let us recall that in Section 4 we defined x ∈ VG as a group invariant (for some group
G) if Av(x) = x. The averaging (over group G) operator Av was defined in Eq. (4.5). Following
Stanley, Ref. [54], we would like now to provide few additional details. For instance, taking into
account Eq. (8.8) and discussion which follows this equation the polynomial ring A[z], z ∈ Cn,
contains a subring S(V )G of invariants defined by

S(V )G = {f (z) ∈ A[z] : M ◦ f (z) = f (Mz) = f (z) ∀M ∈ G}. (9.1)

If X(G) is the set of all irreducible (complex, in general) characters of G, then A[z] can be
decomposed into direct sum as follows: A[z] =∐χ S(V )Gχ , where the condition f (z) ∈ S(V )Gχ
means that

S(V )Gχ = {f ∈ A[z] : M ◦ f (z) = χ(M)f (z) ∀M ∈ G and χ(M) ∈ X(G)}. (9.2)

From this it follows, that earlier defined S(V )G = S(V )Gε where ε denotes the trivial character.
Let n = dim V be the degree of G while |G| be its cardinality. Emmy Noether [70] proved the

following theorem

Theorem 9.3 (Noether). Let G be of cardinality |G| and n is its degree, then S(V )G is generated

as an algebra over C by no more than

(
|G| + n

n

)
homogenous invariants of degree not exceeding

|G|.
The results of previous sections are in complete accord with this theorem. However, now we

are in the position to develop some refinements. This can be accomplished in several steps. For
instance, to put the results of Section 7.6.3 into proper perspective we need to introduce the
following

Definition 9.4. The set T := (C\0)n =: (C∗)n is called a complex algebraic torus.

Since each z ∈ C∗ can be written as z = r exp(iθ) so that for r > 0 the fiber: {z ∈ C∗||z| = r}
is a circle of radius r, we can represent T as the product (R>0)n × (S1)n. The product of n circles
(S1)n is the deformation retract of T. It is indeed a topological torus. Following Fulton [24], we
are going to call it a compact torus Sn. Hence, the algebraic torus is a product of a compact torus
and a vector space. This circumstance is helpful since whatever we can prove for the deformation
retract can be extended to the whole torus T. As an illustration relevant to our calculations of
the Veneziano amplitude made in Part I, and to discussions we had in Section 7, we would like
following Fulton, Ref. [24], to consider a deformation retract of the complex projective space
CPn. Such a retraction is achieved by using the map

τ : CPn → Pn≥ = Rn+1
≥ \ {0}/R+

or, explicitly,

τ : (z0, . . . , zn) �→ 1∑
i |zi|

(|z0|, . . . , |zn|) = (t0, . . . , tn), ti ≥ 0. (9.3)

The mapping τ is onto the standard n-simplex: ti ≥ 0, t0 + · · · + tn = 1.
Since we are interested in the torus action on the algebraic variety the above constructed

deformation retract simplifies matters considerably. We had a chance to see these simplifications
in Part I when we performed our calculations of the Veneziano amplitudes. Now, however, we
would like to consider more general cases. To this purpose we provide the following
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Definition 9.5. An affine algebraic variety V ∈ Cn is the set of zeros of the collection of polyno-
mials from the ring A[z].

According to the famous Hilbert’s Nullstellensatz a collection of such polynomials is finite
and forms the set I(z) := {f ∈ A[z], f (z) = 0} of maximal ideals usually denoted as Spec A[z].
Using this fact, we provide the following formal definition.

Definition 9.6. The zero set of a single function which belongs to I(z) is called algebraic hyper-
surface. Accordingly, the set I(z) corresponds to intersection of a finite number of hypersurfaces.28

Being armed with such results, we would like to construct the affine toric variety and consider
the torus action on such a variety. This is accomplished in several steps. First, instead of considering
the set of Laurent monomials of the type λzα ≡ λz

α1
1 · · · zαnn ∈ A[z], we would like to consider

a subset made of monic monomials, i.e. those with λ = 1. Such a subset forms a subring with
respect to the usual multiplication and addition. The crucial step forward is to assume that for such
monomials the exponent α ∈ Sσ . The monoid Sσ will be defined momentarily. This fact allows
us to define the mapping

ui := zai , (9.4)

with ai being one of the generators of the monoid Sσ and z ∈ C. The monoid Sσ can be defined
now as follows.

Definition 9.7. A semi-group S that is a non-empty set with associative operation is called monoid
if it is commutative, satisfies cancellation law (i.e. s+ x = t + x implies s = t for all s, t, x ∈ S)
and has zero element (i.e. s+ 0 = s, s ∈ S). A monoid Sσ is finitely generated if there exist some
set of a1, . . . , ak ∈ S, called generators, such that

Sσ = Z≥0a1 + · · · + Z≥0ak. (9.5)

Based on this, we can make a crucial observation: the mapping given by Eq. (9.4) provides an
isomorphism between the additive group of exponents ai and the multiplicative group of monic
Laurent polynomials. Next, we recall that the function φ is considered to be quasi homogenous
of degree d with exponents l1, . . . , ln if

φ(λl1x1, . . . , λ
lnxn) = λdφ(x1, . . . , xn), (9.6)

provided that λ ∈ C∗. Applying this result to za ≡ z
a1
1 · · · zann we obtain the Veneziano-like equa-

tion ∑
j

(lj)iaj = di. (9.7)

Clearly, if the index i is numbering different monomials, then the sum in Eq. (9.7) (equal to di)
belongs to the monoid Sσ . The same result can be achieved if instead we would consider the
products of the type ul11 · · · ulnn and rescale all zi’s by the same factor λ. Actually, Eq. (9.7) should

28 In Section 3 (and in Part I) the pole Q = 0 of the period integral, Eq. (3.3), defines the algebraic hypersurface. For
the Veneziano amplitude it is the Fermat hypersurface. More generally, earlier studies of the scattering amplitudes using
Feynman’s diagrammatic rules [71] produced similar types of period integrals. Typically, the denominator Q for such
integrals is a product of several algebraic functions. Therefore, it should be clear that methods developed for calculation
of the Veneziano amplitudes are fully consistent with earlier studies of scattering amplitudes.
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be understood as a scalar product between (lj)i’s (living in the space dual to aj’s) and the aj’s. It
is convenient at this point to define a cone.

Definition 9.8. A convex polyhedral cone σ is a set

σ =
{

k∑
i=1

riai, ri ≥ 0

}
. (9.8)

Remark 9.9. In the case when earlier introduced generators a1, . . . , ak are considered as the
basis of a vector space V, the definitions of Sσ and σ describe the same object. We shall always
refer to it as a cone. In this case the dual cone σ∨ is defined by

Definition 9.10.

σ∨ = {l ∈ V ∗ : 〈l, y〉 ≥ 0 ∀y ∈ σ}. (9.9)

It explains why the set of (lj)i’s “lives” in the space dual to that for aj’s. Next, in view of the
results just described, we can rewrite Eq. (8.8) as

f (z) =
∑
a∈Sσ

λaza =
∑

l

λlul. (9.10)

As before, these polynomials form a polynomial ring. The ideal for this ring can be constructed
based on observation that for the fixed di and the assigned set of cone generators a′

i there is more
than one set of generators for the dual cone. This redundancy produces relations of the type

u
l1
1 · · · ulkk = u

l̃1
1 · · · ul̃kk . (9.11)

If now we requireui ∈ Ci, then the above equation belongs to the ideal I(z) of the above polynomial
ring. In accord with Definition 9.6, Eq. (9.11) represents a hypersurface. Naturally, the ideal I(z)
represents the intersection of these hypersurfaces. The affine toric variety Xσ∨ is made out of the
hypersurfaces which belong to I(z). The generators {u1, . . . , uk} ∈ Ck are coordinates for Xσ∨ .
They represent the same point inXσ∨ if and only if ul = ul̃. Thus formed toric variety corresponds
to just one (dual) cone. The set of cones having a common origin can be assembled into a fan
[24,25]. The fan is complete if it spans the k-dimensional vector space. In fact, using results of
Appendix A, part A.1, we notice that there is one-to-one correspondence between the cones and
the chambers defined in Appendix A. From chambers one can construct a gallery and, hence, a
building. So that a complete fan is essentially a building. The information leading to the design of
a particular building can be thus used for construction of a toric variety from the setΣ (a complete
fan) of affine toric varieties. To do so, one needs the set of gluing maps {Ψσ∨σ∨}. Thus, we obtain
the following

Definition 9.11. Let Σ be a complete fan and
∐
σ∨∈Σ Xσ∨ be the disjoint union of affine toric

varieties. Then, using the set of gluing maps {Ψσ∨σ̆∨} such that each of them identifies two points
x ∈ Xσ∨ and x̆ ∈ Xσ̆∨ on respective affine varieties, one obtains the toric variety XΣ determined
by the fan Σ.

Thus constructed varietyXΣ may contain singularities. This should be obvious just by looking at
Eq. (9.11). There is a procedure of desingularization described, for example, in Ref. [24] which
we are going to by-pass. This is permissible in view of the results we have discussed thus far.
Clearly, if physically needed, such more complicated varieties can be studied as well. Obtained
results allow us to introduce the following
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Definition 9.12. The torus action is a continuous map: T ×XΣ → XΣ such that for each affine
variety corresponding to the dual cone it is given by

T ×Xσ∨ → Xσ∨ , (t, x) �→ tx := (ta1x1, . . . , t
akxk). (9.12)

Naturally, such an action should be compatible with the gluing maps thus extending it from one
cone (chamber) to the entire varietyXΣ (building). The compatibility is easy to enforce since for
each of Eq. (9.11) multiplication by t-factors will not affect the solutions set. This can be formally
stated as follows. Let Ψ : XΣ → XΣ̃ be a map and α : T → T ′ a homomorphism, then the map
Ψ is called equivariant if it obeys the following rule compatible with earlier defined Eq. (9.2):

Ψ (cx) = χ(c)Ψ (x) for all c ∈ T. (9.13)

As before, the factor χ(c) is a character of the algebraic (in our case, torus) group. This fact is
known as the Borel–Weil theorem [72]. As such it belongs to the theory of the induced group
representations [73].

Remark 9.13. In spite of its apparent simplicity, this theorem is exceptionally deep. It can be used
for reconstruction of physical model whose observables obey Eq. (9.13). Examples are given in
Refs. [14,74]. Very important contributions to the Borel–Weil–Bott theorem were made recently
by Teleman, Refs. [75,76]. These are mainly applicable to the CFT since in his case the loop
groups need to be used as explained below. Evidently, models reproducing the Veneziano and
Veneziano-like amplitudes as well as all CFT can be reconstructed exclusively with help of the
Borel–Weil–Bott theorem as the point of departure.

For physical applications we are also interested in maps Ψ compatible with Eq. (9.2) producing
ring of symmetric invariants. Evidently, they are given by

Ψ (cx) = Ψ (x). (9.14)

To actually obtain these invariants we need to study the orbits of the torus action. To this purpose,
in view of Eq. (9.12), we need to consider the following fixed point equation

tax = x. (9.15)

Apart from trivial solutions: x = 0 and x = ∞, there is a nontrivial solution ta = 1 for any x. For
integer a’s this is a cyclotomic equation whose nontrivial a− 1 solutions all lie on the circle S

1
.

In view of this circumstance, it is possible to construct the invariants for this case as we would like
to explain now. First, such an invariant can be built as a ratio of two equivariant mappings of the
type given by Eq. (9.13).29 By construction, such a ratio is the projective toric variety. Unlike the
affine case, such varieties are not represented by functions of homogenous coordinates in CPn.
Instead, they are just constants associated with points in CPn which they represent.30 Second
option, is to restrict the algebraic torus to a compact torus. These two options are interrelated in
an important way as we would like to explain now.

To this purpose we notice that Eq. (9.12) still holds if some of t-factors are replaced by 1’s. This
means that one should take into account all situations when one, two, etc. t-factors in Eq. (9.12)

29 Clearly, the integrand in the period integral, Eq. (3.3), when written in the projective form (as explained in Section
3.1. of Part I) fits this requirement.
30 This is nontrivial fact. It is used in Ref. [6] and Part III for development of symplectic models reproducing the

Veneziano amplitudes.
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are replaced by 1’s and account for all permutations involving such cases. This observation leads
to the torus actions on toric subvarieties. It is very important that different orbits which belong to
different subvarieties do not overlap. Thus, by design, XΣ is the disjoint union of finite number
of orbits identified with the subvarieties of XΣ . This leads to the flag decomposition, etc. to be
discussed further in Parts III and IV. For the sake of space, in this part we consider only the main
ideas. For instance, let us consider a specific example of an action of the map Ψ on a monomial
ul = u

l1
1 · · · ulnn ≡ z

l1a1
1 · · · zln1an

n . For such a map the character χ(c) is given by

χ(c) = t〈l·a〉, (9.16)

where 〈l · a〉 =∑i liai and both li and ai are integers. Following Ref. [77], let us consider the
limit t → 0 in the above expression. We obtain,

c(t) =
{

1 if 〈l · a〉 = 0

0 if 〈l · a〉 �= 0.
(9.17)

The equation 〈l · a〉 = 0 describes a hyperplane or, better, a set of hyperplanes for a given vector a.
Based on the results of Appendix A, such set forms at least one chamber. To be more accurate, we
would like to complicate matters a little bit by introducing a subset I ⊂ {1, . . . , n} such that, say,
only those li’s which belong to this subset satisfy 〈l · a〉 = 0.Naturally, one obtains the one-to-one
correspondence between such subsets and earlier mentioned flags. The set of such constructed
monomials forms the set of invariants of torus group action. In view of Eq. (9.15), we would like
to replace the limiting t → 0 procedure by the limiting procedure requiring t → ξ, where ξ is
the nontrivial nth root of unity. After such a replacement we are entering formally the domain
of pseudo-reflection groups as explained in Appendix A, part A.4. Such groups are acting on
hyperplanes 〈l · a〉. Replacing t by ξ causes us to change the rule, Eq. (9.17), as follows

c(ξ) =
{

1 if 〈l · a〉 = 0 mod n

0 if 〈l · a〉 �= 0
(9.18)

At this point it is appropriate to recall Eq. (3.11a) of Part I. In view of this equation, we shall
call the equation 〈l · a〉 = n as the Veneziano condition while the Kac-Moody-Bloch-Bragg (K −
M − B − B) condition, Eq. (3.22) of Part I, can be written now as 〈l · a〉 = 0 mod n.

The results of Appendix A, parts A.3, A.4, indicate that the first option (the Veneziano condi-
tion) is characteristic for the standard Weyl–Coxeter (pseudo)reflection groups while the second
is characteristic for the affine Weyl–Coxeter groups thus leading to the Kac–Moody affine Lie
algebras.

Remark 9.14. In Chapter 4, Section 4.4, of Ref. [21]. Ginzburg shows how to recover finite
dimensional representations, e.g. slk(C), discussed in Section 8, even in the case when K-M-B-B
condition is used instead of the Veneziano. In this sense, in accord with Remark 9.13, one can
design both CFT and high energy physics observables using the same formalism. Still another
option is discussed immediately below.

The arguments just presented provide “physical” proof of the theorem by Serre.
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9.2. Additional uses of the theorem by Serre

9.2.1. Connections with the theory of hyperplane arrangements
According to Appendix A, part A.4, both real and complex reflection groups are isometries

of respectively Rn and Cn spaces leaving some known quadratic forms invariant. The quadratic
forms are essentially the hyperplanes. Although Corollary 2.3 to the theorem by Solomon pro-
vides a very interesting connection between the hyperplanes and pseudo-reflections, it should
be clear that Eqs. (9.18) and (2.6) represent different (but related) sets of hyperplanes (in view
of the isomorphism, Eq. (9.4)). The Weyl group W introduced in Appendix A permutes these
hyperplanes

Definition 9.15. A collection A of hyperplanes on which the group W acts transitively is called
the reflection arrangement.

Remark 9.16. In mathematics literature, one can find a large group of researchers who take the
above definition as a starting point of the whole mathematical development presented in this paper,
e.g. see Refs. [33,34]. Such an approach is helpful in the following sense. The hypergeometric
integrals of the type given by Eq. (3.5) (and those discussed in Part I) can be obtained as solutions
of some differential equations (of Picard–Fucs type) whose origin is naturally explained with
help of the theory of arrangements. The same equations can be obtained from the point of view of
singularity theory, e.g see Ref. [78]. In our earlier work, Ref. [10], we have indeed obtained such
type of equations for the Veneziano-type integral, Eq. (3.5), using ideas from singularity theory.
Since the theory of arrangements was already applied successfully [79] to reproduce the results
of two dimensional CFT [80], it can be used, in principle, as unifying formalism for both “new”
string and “old” CFT.

In Appendix A, parts A.3, A.4, we have explained in simple terms the difference between the
affine and standard (pseudo)reflection groups. The polyhedra associated with these groups can be
thought of as fundamental domains for respective groups of isometries of Rn and Cn. The action
of such isometry groups causes tessellation of these spaces. The situation here is analogous to that
encountered in solid state physics [81] (as we mentioned already in Part I) where it is well known
that the scattering processes in solids should be treated with account of translational symmetry of
the crystal so that the concepts of energy and momentum loose their original meaning and should
be modified to account for periodicity.31 Such situation is characteristic for all CFT where one
should use the affine Weyl–Coxeter reflection groups and the Kac–Moody algebras associated
with them in accord with Proposition A.1 of Appendix A. At the same time, for processes
taking place in high energy physics, it is sufficient to consider only the point group symmetries
(in solid physics terminology), i.e. the usual Weyl–Coxeter reflection groups and the complete
fans associated with them. Such a picture can be extended, if necessary, to include the spherical,
hyperbolic and complex hyperbolic spaces so that the polyhedra associated with isometry groups
of these spaces will represent the respective fundamental domains. In the case of Kac–Moody
algebras such a program was actually implemented (e.g. for the hyperbolic spaces) as described
in the book by Kac, Ref. [57]. In the case of high energy physics the next subsection can be used
as a point of departure for analogous development.

31 As a typical illustration we suggest to our readers to think about, is the process of heat or electrical conduction in
perfect crystals and its explanation in the solid state physics literature [81].
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9.2.2. From complex hyperbolic space to the Heisenberg group
Earlier in Remark 7.4 we have noticed that the Hermitian quadratic form can be extended so

that the isometries of the resulting complex space are complex hyperbolic. At that time such a
possibility appeared no more than a curiosity. However, upon discussing the exact solution of the
Veneziano model in Section 8 we made an observation that the Dirac-type equation associated
with the Hamiltonian, Eq. (8.11), is invariant with respect to the Lorentz transformations and it is
this invariance which eventually causes connections with zeros of the Riemann zeta function. The
connected part of the Lorentz group describes isometries of the hyperbolic space, e.g. see [82, pp.
64–66]. The complex hyperbolic space includes real hyperbolic space as a subspace. According
to Goldman, Ref. [47], the pseudo-reflection groups are isometries of the complex hyperbolic
space.

In our earlier work, Ref. [83], we discussed various properties of the real hyperbolic space
in connection with widely publicized AdS-CFT correspondence. As can be seen either from the
book by Thurston, Ref. [82], or from our earlier work, the hyperbolic ball model of the real
hyperbolic space is quite adequate for description of many meaningful physical models. In this
case, the boundary of the hyperbolic space plays an important role. For instance, the infinitesimal
variations at the boundary of the Poincaré disc model – the simplest model of H2 – produce
naturally the Virasoro algebra. Extension of the method producing this algebra to, say, H3 is
complicated by the Mostow rigidity theorem (as discussed in Ref. [83]). This theorem tells us that
the Teichmüller space for the hyperbolic three-manifolds without boundaries is a point. Simply
speaking, all hyperbolic surfaces without boundaries in hyperbolic space are rigid (nonbendable).
This restriction can be lifted in certain cases.

Since the real hyperbolic space is a part of complex hyperbolic and since the real hyperbolic
space can be modeled by the hyperbolic ball model, it is not too surprising that the complex
hyperbolic space also can be modelled with help of the complex hyperbolic ball model as it is
demonstrated in [47]. What is surprising however is that the isometry group at the boundary
of this ball model is the Heisenberg group. We would like to argue that to make an extension
as suggested in Remark 7.4 is not an artifact but, actually, a necessity. To demonstrate this we
need to go to Part I and to take into account the discussion on pages 14 and 15 related to phase
factors. This discussion is just an adaptation of results described in Chapter 5 of the monograph
by Lang, Ref. [84]. Specifically, on page 77 in connection with calculation of the periods of the
Fermat curve, he mentions about a complex plane C with two points (0 and 1) deleted. Clearly,
the third point is ∞ and, therefore, such trice punctured plane has the hyperbolic disk model as
its universal cover. Due to factorisation property of the Veneziano amplitude (e.g. see Eq. (3.28)
of Part I), the model of complex projective space discussed earlier in Section 7.6.3 will inherit the
hyperbolicity coming from each complex plane C. In fact, much more can be said following Ref.
[46]. In particular, by analogy with complex sphere (equivalent to a projective space CP1) with
n points removed thus making it hyperbolic one can think about a complex projective space CPn

with 2n+ 1 hyperplanes removed. In our case, using terminology of hyperplane arrangements,
Refs. [33,34], Eq. (2.6) is called a defining polynomial for such an arrangement. The entries in
such polynomial represent hyperplanes. The polynomial is zero when at least one of its entries
becomes zero. In the simplest case of four particle amplitude we have a polynomial Q of the
type: Q = x(1 − x) The third hyperplane is at infinity. Clearly, zeros of Q are the same as we
just mentioned. The general pattern can be deduced from Eq. (2.8) of Part I. Hence, removal of
certain number of hyperplanes from projective space can indeed make it hyperbolic. This is the
content of the theorem by Kiernan, Ref. [85], who proved that the manifoldM = CPn\ ∪2n+1

i=1 Hi
is hyperbolic if the hyperplanesHi are in general position. We would like to prove this result using
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some physical arguments relevant to calculations of the Veneziano amplitudes. For this purpose
it is sufficient only to take another look at our Eq. (1.22) of Part I

P(k, t) ≡
(

1

1 − t

)k+1

=
∞∑
n=0

p(k, n)tn. (9.19)

As in Eq. (2.8) of Part I, we replace the t-variable in this equation by the variable t = u1 + u1 +
· · · + un. Next, choosing the parametrization of the projective space as described in Section 7.6.3,
we would like to consider the generating function K(z, z̄) of the following type

K(z, z̄) = n!

πn

(
1

1 − t

)n+1

, (9.20)

where now t =∑n
i=1 ziz̄i ≡∑n

i=1 ui (and the last sum is written as a deformation retract). The
constants n! and πn are chosen in accord with Refs. [46, 47, p. 79]. Such a function is known in
geometric function theory, Ref. [46], as the Bergman kernel. It is used as a potential for constriction
of (the Bergman) metric by the following rule:

ds2 =
n∑

i,j=0

gi,j(z, z̄) dzi dz̄j =
n∑

i,j=0

(
∂2

∂zi∂z̄j
lnK(z, z̄)

)
dzi dz̄j. (9.21)

Also, the same potential is used for construction of the fundamental (1, 1) form which (up to a
factor i/π) coincides with the first Chern class [48, pp. 219,220]. Using this observation along
with standard facts from the theory of characteristic classes it is rather straightforward now to
reproduce the Solomon algebra of invariants. Moreover, since the symplectic manifolds all are of
Kähler type and since in the present case the Kähler manifold is of Hodge type, Ref. [48, p. 219],
this fact can be used for development of symplectic model reproducing the Veneziano amplitudes.
This is done in Ref. [6] and will be further discussed in Part III using more rigorous mathematical
arguments. The metric in Eq. (9.21) by design is the metric of the complex hyperbolic ball Bn

model. Biholomorphic mappings of Bn are isometries of the Bergman metric, Ref. [47, p. 79]and
Ref. [48, p. 219]. It plays the same role for the complex hyperbolic space as the Lobachevsky
metric for the real hyperbolic space. But, as we know already from our experience with Eqs.
(1.19) and (2.8) of Part I, Eq. (9.20) can be identified with the partition (generating) function
for the multiparticle Veneziano amplitudes! Thus, we just have demonstrated that inseparable
connections between the complex hyperbolic geometry and the Veneziano amplitudes imply the
existence of the Heisenberg group at the boundary ofBn. The connections between the hyperbolic
geometry inside Bn and the Heisenberg group at the boundary of Bn is explained in detail in
Goldman’s monograph, Ref. [47]. Our earlier experience with the AdS-CFT correspondence in
real hyperbolic space, Ref. [83], suggests that analogous constructions can be made in the complex
hyperbolic space. The intrinsic role of the Heisenberg group at the boundary of Bn makes such a
project especially attractive.

Thus, the theory of polynomial invariants of finite (pseudo)reflection groups and, especially,
Theorem 9.1 by Serre, not only allow us to restore the scattering amplitudes and the generating
function associated with them but also impose very rigid constraints on analytical form of such
amplitudes thus making them to reflect the symmetries of space-time in which they act. This
puts the Veneziano amplitudes into very unique position. Only future might tell if such a position
should be replaced by something even more fundamental.
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Notes added in proof

1. The results of Sections 8 and 9 can be put in a broader mathematical context with help of
the monograph on “Noncommutative Harmonic Analysis” by M.E. Taylor, AMS Publishers,
Providence, RI, 1986.

2. Relevance of spin chains to QCD had been discussed by Faddeev and Korchemsky in the
paper “High energy QCD as a completely integrable model”, arxiv: hep-th/9404173. The
arxiv contains numerous follow up papers based on that, just cited.

3. In Part IV we shall discuss results by Faddeev and Korchemsky using formalism developed in
this work.
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Appendix A. Some results from the theory of Weyl–Coxeter reflection and
pseudo-reflection groups

A.1. The Weyl group

Let V be a finite dimensional vector space endowed with a scalar product 〈, 〉 which is positive-
definite symmetric bilinear form. For each nonzero α ∈ V let rα denote the orthogonal reflection
in the hyperplane Hα through the origin perpendicular to α. Clearly, the set of hyperplanes Hα is
in one-to-one correspondence with the set of α’s. For v ∈ V we obtain,

rα(v) = v− 〈v, α∨〉α, (A.1)

where α∨ = 2α/〈α, α〉 is the vector dual to α. Thus defined reflection is an orthogonal transforma-
tion in a sense that 〈rα(v), rα(µ)〉 = 〈ν, µ〉. In addition, [rα(v)]2 = 1∀α, v. Conversely, these two
properties imply the transformation law, Eq. (A.1). From these results it follows that for v = αwe
get rα(α) = −α, that is reflection in the hyperplane with change of vector orientation. If the set of
vectors α ∈ V is mutually orthogonal, then rα(v) = v for v �= α but, in general, the orthogonality
is not required. Because of this, one introduces the root system � of vectors which span V. Such
a system is crystallographic if for each pair α, β ∈ � one has

〈α∨, β〉 ∈ Z and rα(β) ∈ �. (A.2)

Thus, each reflection rα(α ∈ �) permutes�. A finite collection of such reflections forms a group
W known as the Weyl group of �. The vectors α∨ (for α ∈ �) form a root system �∨ dual to
�. Let v ∈ � be such that 〈v, α〉 �= 0 for each α ∈ �. Then, the set �+ of roots α ∈ � such
that 〈v, α〉 > 0 is called a system of positive roots of �. A root α ∈ �+ is simple if it is not a
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sum of two elements from �+. The number of simple roots coincides with the dimension of the
vector space V and the root set � is made of the disjoint union � = �+ ��−. The integral
linear combinations of roots, i.e.

∑
i miαi with m′

i being integers, forms a root lattice Q(·) in V
(that is free abelian group of rank n = dim V ). Clearly, the simple roots form a basis Σ of Q(·).
Accordingly, Q(·+) is made of combinations

∑
i miαi with mi’s being nonnegative integers.

In view of one-to-one correspondence between the set of hyperplanes ∪αHα and the set of
roots �, it is convenient sometimes to introduce the chambers as connected components of the
complement of ∪αHα in V. In the literature, Ref. [17, p. 70], this complement is known also as
the Tits cone. Accordingly, for a given chamber Ci its walls are made of hyperplanes Hα. The
roots in � can therefore be characterized as those roots which are orthogonal to some wall of
Ci and directed towards the interior of this chamber. A gallery is a sequence (C0, C1, . . . , Cl) of
chambers each of which is adjacent to and distinct from the next. Let w = ri1 . . . ril then, treating
the Weyl group W as a chamber system, a gallery from 1 to w can be formally written as (1,
ri1 , ri1ri2 , . . . , ri1 . . . ril ). If this gallery is of the shortest possible length l(w), then one is saying
that ri1 . . . ril is reduced decomposition for the wordwmade of “letters” rij . LetCx andCy be some
distinct chambers which we shall call x and y for brevity. One can introduce the distance function
d(x, y) so that, for example, if w = ri1 . . . ril is the reduced decomposition, then d(x, y) = w if
and only if there is a gallery of the type ri1 . . . ril from x to y. If, for instance, d(x, y) = ri, this
means simply that x and y are distinct and i-adjacent. A building B is a chamber system having
a distance function d(x, y) taking values in the Weyl–Coxeter group W. Finally, an apartment in
a building B is a subcomplex B̂ of B which is isomorphic to W. There is a bijection ϕ : W → B̂
such that ϕ(w) and ϕ(w′) are i-adjacent in B̂ if and only if w and w′ are adjacent in W, e.g. see
Ref. [86].

A.2. The Coxeter group

The Coxeter group is related to the Weyl group through the obviously looking type of relation
between reflections,

(rαrβ)m(α,β) = 1, (A.3)

where m(α, α) = 1 and m(α, β) ≥ 2 for α �= β. In particular, for finite Weyl groups m(α, β) ∈
{2, 3, 4, 6}, Ref. [30, p. 39], while for the affine Weyl groups (to be discussed below) m(α, β) ∈
{2, 3, 4, 6,∞}, e.g. read Ref. [30, p. 136], and Proposition A.1 below. Clearly, different refection
groups will have different matrix m(α, β) and, clearly, the matrix m(α, β) is connected with the
bilinear form (the Cartan matrix, see below) for the Weyl’s group W [66,87]. As an example of
use of the concept of building in the Weil group, consider the set of fundamental weights defined
as follows. For the root basis Σ (or Σ∨) the set of fundamental weights D = {ω1, . . . , ωn} with
respect to Σ is defined by the rule:

〈α∨
i , ωj〉 = δij. (A.4)

The usefulness of such defined fundamental weights lies in the fact that they allow to introduce the
concept of the highest weight λ (sometimes also known as the dominant weight, [88, p. 203]. Thus
defined λ can be presented as λ =∑d

i=1 aiωj with all ai ≥ 0. Sometimes it is convenient to relax
the definition of fundamental weights to just weights by comparing Eqs. (A.2) and (A.4). That is
β’s in Eq. (A.2) are just weights. Thus, for instance, we have � as building and a subcomplex D
of fundamental weights as an apartment complex.
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To illustrate some of these concepts let us consider examples which are intuitively appealing
and immediately relevant to the discussion in the main text. These are the root system Bd and Cd .
They are made of vector set {u1, . . . , ud} constituting an orthonormal basis of the d-dimensional
cube. The vectors ui should not be necessarily of unit length, Ref. [29, p. 27]. It is important only
that they all have the same length. For Bd system one normally chooses, Ref. [29, p. 30],

� = {±ui ± uj|i �= j} � {±ui}. (A.5)

In this case, the reflections corresponding to elements of � can be described by their effect on
the set {u1, . . . , ud}. Specifically, rui−uj = permutation which interchanges ui and uj; rui = sign
change of ui; rui+uj = permutation which interchanges ui and uj and changes their sign. The
action of the Weyl group on � can be summarized by the following formula

W(�) =
(

Z
2Z

)d
� Σd, (A.6)

with � representing the semidirect product between the permutation group Σd and the dihedral
group (Z/2Z)d of sign changes both acting on {u1, . . . , ud}. Thus defined product constitutes the
full symmetry group of the d-cube, Ref. [29, p. 31]. The same symmetry information is contained
in Cd root system defined by

� = {±ui ± uj|i �= j} � {±2ui}. (A.7)

Both systems possess the same root decomposition:� = �+ ��−, Ref. [29, p. 37]. In particular,
considering a square as an example we obtain the basis ΣB2 of Q(·) as

ΣB2 = {u1 − u2, u2}. (A.8a)

From here the dual basis is given by

Σ∨
B2

= {u1 − u2, 2u2}. (A.8b)

Using Eq. (A.4) we obtain the fundamental weights asω1 = u1 andω2 = 1
2 (u1 + u2) respectively.

By design, they obey the orthogonality condition, Eq. (A.4). The Dynkin diagram, Ref. [29, p.
122], for B2 provides us with coefficients a1 = 1 and a2 = 2 obtained for the case when the
expansion λ =∑d

i=1 aiωj is relaxed to λ =∑d
i=1 aiβj as discussed above. In view of Eq. (A.8a)

this produces at once: λB2 = u1 + u2. Analogously, for C2 we obtain,

ΣC2 = {u1 − u2, 2u2}, (A.9)

with coefficients a1 = 2 and a2 = 2 thus leading to λC2 = 2(u1 + u2).
For the square, these results are intuitively obvious. Evidently, the d-dimensional case can be

treated accordingly. The physical significance of the highest weight should become obvious if one
compares the Weyl–Coxeter reflection group algebra with that for the angular momentum familiar
to physicists. In the last case, the highest weight means simply the largest value of the projection
of the angular momentum onto z-axis. The raising operator will annihilate the wave vector for
such a quantum state while the lowering operator will produce all eigenvalues lesser than the
maximal value (up to the largest negative) and, naturally, all eigenfunctions. The significance
of the fundamental weights goes beyond this analogy, however. Indeed, suppose we can expand
some root αi according to the rule

αi =
∑
j

mijωj. (A.10)
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Then, substitution of such an expansion into Eq. (A.2) and use of Eq. (A.4) produces:

〈α∨
k , αi〉 =

∑
j

mij〈α∨
k , ωj〉 = mik. (A.11)

The expression 〈α∨
k , αi〉 is known in the literature as the Cartan matrix. It plays the central role

in defining both finite and infinite dimensional semisimple Lie algebras [57]. According to Eqs.
(A.4), (A.10) and (A.11), the transpose of the Cartan matrix transforms the fundamental weights
into the fundamental roots.

A.3. The affine Weyl–Coxeter groups

Physical significance of the affine Weyl–Coxeter reflection groups comes from the following
proposition

Proposition A.1. Let W be the Weyl group of any Kac-Moody algebra. Then W is a Coxeter group
for whichm(α, β) ∈ {2, 3, 4, 6,∞}. Any Coxeter group with suchm(α, β) is crystallographic (e.g.
see Eq. (A.2))

The proof can be found in Ref. [87, pp. 25–26]. To understand better the affine Weyl–Coxeter
groups, following Coxeter, Ref. [89], we would like to explain in simple terms the origin and the
physical meaning of these groups. It is being hoped, that such a discussion might significantly
facilitate understanding of the results presented in the main text. We begin with the quadratic form

Θ =
∑
i,j

aijxixj, (A.12)

having symmetric matrix ‖aij‖ whose rank is ρ. Such a form is said to be positive definite if
it is positive for all values of x = {x1, . . . , xn} (n ≥ ρ in general !) except zero. It is positive
semidefinite if it is never negative but vanishes for some xi’s not all zero. The formΘ is indefinite
if it can be both positive for some xi’s and negative for others.32 If the positive semidefinite form
vanishes for some xi = zi(i = 1 − n), then∑

i

ziaij = 0, j = 1 − n. (A.13)

For a given matrix ‖aij‖ Eq. (A.13) can be considered as the system of linear algebraic equations
for zi’s. Let N = n− ρ be the nullity of the form Θ. Then, it is a simple matter to show that
every positive semidefinite connected Θ form is of nullity 1. The form is connected if it cannot
be presented as a sum of two forms involving separate sets of variables. The following two
propositions play the key role in causing differences between the infinite affine Weyl–Coxeter
(Kac–Moody) algebras and their finite counterparts

Proposition A.2. For any positive semidefinite connected Θ form there exist unique (up to
multiplication by the common constant) positive numbers zi satisfying Eq. (A.13).

Proposition A.3. If we modify a positive semidefinite connected Θ form by making one of the
variables vanish, the obtained form becomes positive definite.

32 For the purposes of comparison with existing mathematical physics literature [26] it is sufficient to consider only
positive and positive semidefinite forms.
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Next, we consider the quadratic formΘ as the norm and the matrix aij as the metric tensor. Then,
as usual, we have x · x = Θ = |x|2 and, in addition, x · y =∑i,j aijxiyj ≡∑i x

iyi =∑i xiy
i so

that if vectors x and y are orthogonal we get
∑
i,j aijxiyj = 0 as required. Each vector x determines

a point (x) and a hyperplane [x] with respect to some reference point 0 chosen as an origin. The
distance l between a point (x) and a hyperplane [y] measured along the perpendicular is the
projection of x along the direction of y, i.e.

l = x · y
|y| . (A.14)

Let now (x′) be the image of (x) by reflection in the hyperplane [y]. Then, x − x′ is a vector
parallel to y of magnitude 2 l. Thus,

x′ = x − 2
x · y
|y| y, (A.15)

in accord with Eq. (A.1). From here, the equation for the reflecting hyperplane is just x · y = 0.
Let the vector y be pre assigned, then taking into account Propositions A.2 and A.3 we conclude
that for the nullity N = 0 the only solution possible is x = 0. That is to say, in such a case n
reflecting hyperplanes have the point 0 as the only common intersection point. A complement of
these hyperplanes in Rn forms a chamber system discussed already in A.1). In the main text it is
called a complete fan in accordance with existing terminology [24,25]. For N = 1 the equation
x · y = 0 may have many nonnegative solutions for x. Actually, such reflecting hyperplanes occur
in a finite number of different directions. More accurately, such hyperplanes belong to a finite
number of families, each consisting of hyperplanes parallel to each other. If we choose a single
representative from each family in a such a way that it passes through 0, then the complement
of such representatives is going to form a polyhedral cone as before. But now, in addition, we
have a group of translations T for each representative of the hyperplane family so that the total
affine Weyl group Waff is the semidirect product: Waff = T � W . The fundamental region for
Waff is a simplex (to be precise, an open simplex, Bourbaki, Ref. [17], Chapter 5, Proposition 10)
called alcove bounded by n+ 1 hyperplanes (walls) n of which are reflecting hyperplanes passing
through 0 while the remaining one serves to reflect 0 into another point 0′. If one connects 0 with
0′ and reflects this line in other hyperplanes one obtains a lattice. By analogy with solid state
physics [81] one can construct a dual lattice (just like in A.1 and A.2 above) the fundamental cell
of which is known in physics as the Brilluin zone. For the alcove the fundamental region of the
dual lattice (the Brilluin zone) is the polytope having 0 for its centre of symmetry, i.e. zonotope
[89].

A.4. The pseudo-reflection groups

Although the pseudo-reflection groups are also formally described in the monograph by Bour-
baki, Ref. [17], their geometrical (and potentially physical) meaning is beautifully explained in
the book by McMullen [32]. In particular, all earlier presented reflection groups are isometries of
the Euclidean space. Their action preserves some quadratic form which is real. More generally,
one can think of reflections in spherical and hyperbolic spaces. From this point of view earlier de-
scribed polytopes (polyhedra) represent the fundamental regions for respective isometry groups.
Action of these groups on fundamental regions causes tesselation of these spaces (without gaps).
The collection of spaces can be enlarged by considering reflections in the complex n-dimensional
space Cn. In this case the Euclidean quadratic form is replaced by the positive definite Hermitian
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form. Since locally CPn is the same as Cn+1 and since CPn is at the same time a symplectic
manifold with well known symplectic two-form Ω [27], this makes the pseudo-reflection groups
(which leave Ω invariant) especially attractive for physical applications (e.g. see Section 9 and
Part III). The pseudo-reflections are easily described. By analogy with Eq. (A.1) (or (A.15)) one
writes

rα(v) = v+ (ξ − 1)〈v, α∨〉α, (A.16)

where ξ is the nontrivial solution of the cyclotomic equation xh = x and α∨ = α/〈α, α〉 with
〈x, y〉 being a positive definite Hermitian form satisfying as before 〈rα(v), rα(µ)〉 = 〈v, µ〉 with α
being an eigenvector such that rα(α) = ξα.33 In addition, [rα(α)]k = ξkα for 1 ≤ k ≤ h− 1. This
follows from the fact that

[rα(ν)]k = ν + (1 + ξ + · · · + ξk−1)(ξ − 1)〈v, α∨〉α, (A.17)

and taking into account that (1 + ξ + · · · + ξk−1)(ξ − 1) = ξk − 1.
Finally, the Weyl–Coxeter reflection groups considered earlier in this Appendix can be treated

as pseudo-reflection groups if one replaces a single Euclidean reflection by the so called Coxeter
element [19,29] ωwhich is a product of individual reflections belonging to the distinct roots of�.
Hence, the Euclidean Weyl–Coxeter reflection groups can be considered as a subset of the pseudo-
reflection groups so that all useful information about these groups can be obtained from considering
the same problems for the pseudo-reflection groups. It can be shown [19,29] that the Coxeter
element ω has eigenvalues ξm1 , . . . , ξml with l being dimension of the vector space � while the
exponentsm1, . . . , ml being positive integers less than h and such that

∑l
i=1(h−mi) =∑l

i=1mi.
This result implies that the number

∑l
i=1mi = N—the number of positive roots in the Weyl–

Coxeter group is connected with the Coxeter number h via relation: N = 1
2 lh, Ref. [30, p. 79].
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